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Abstract

The inference of “hidden” linear momentum in the static electromagnetic fields of models studied

in the literature is based on the theorem in relativity that a closed system whose center of energy

is at rest has zero total momentum. The problem is that the systems examined and thought to

have hidden momentum are not at rest in their original rest frames, so applying this theorem to

them as if they were stationary in the original rest frame is erroneous. This error is due to ignoring

the Lorentz forces that arise when putting these systems together and the energy expended in the

assembly. In this paper I show, for a number of models examined in the literature, that hidden

momentum does not exist if you take into account how the system is assembled. In this paper

I recalculate the momenta of several systems appearing in the literature and show they do not

contain hidden momentum.
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I. INTRODUCTION

The linear momentum residing in an electromagnetic field is given, in the Lorentz formu-

lation, by the following volume integral of the electromagnetic linear momentum density.

Pem = ǫo

∫
V

(E ×B)dV, (1)

whereE is the electric field andB the magnetic field. In a system with static electromagnetic

fields, this momentum, as is generally thought1,3, must be balanced by an equal amount

of relativistic hidden momentum somehow mechanically present in the system. “Hidden

momentum”, if it actually exists, is thus a rather obscure property of these systems. It

appears the basic assumption that leads to the idea of hidden momentum is that the center

of energy of the systems examined is stationary. But these systems are not stationary with

respect to their original rest frame. Overlooked in models in which hidden momentum is

inferred is the lack of appreciation of the effect of forces required to assemble the models

originally. When the mechanical momentum imparted to the model in its assembly is taken

into account, the total momentum, electromagnetic plus mechanical, is conserved without

the need to postulate a hidden form.

In this paper I have considered a number of models that have appeared in the literature

and show they contain no hidden momentum when the assembly of the models is included

in the calculation of total momentum. The examples I examine are:

• An ideal electric dipole in a uniform magnetic field3.

• A sphere carrying a surface charge producing a dipole electric field outside the sphere

coupled with a uniform axial surface current on the sphere1,5.

• A magnetic moment in the vicinity of a point charge4.

II. AN IDEAL ELECTRIC DIPOLE IN A UNIFORM EXTERNAL MAGNETIC

FIELD

Babson et al3 calculate the electromagnetic momentum and impulses for an electric dipole

in a uniform magnetic field using two models. In one the magnetic field is produced by a

uniformly charged spherical shell centered at the origin of a three-dimensional Cartesian
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coordinate system. The other has the electric dipole inside a long solenoid. The purpose of

these models is to represent a capacitor in a magnetic field. Neither of these models contains

hidden momentum as will be shown below. In fact the argument against hidden momentum

is the same for both models.

Looking at the first model, at the origin and center of the shell is a point electric dipole

with its dipole moment pointing in the positive y direction. The shell is rotating about the

z axis such that a uniform current is set up which produces a magnetic field. Inside the

shell the magnetic field is uniform and points in the positive z direction. Outside the shell

the field is that of a magnetic dipole with its moment lying on the z axis and pointing in

the positive z direction. They calculate the field momentum due to this rotating sphere and

the point dipole to be (their Eq. (34)),

Pem = −
1

2
(p×B), (2)

where p is the dipole moment of the electric dipole and B is the (constant and uniform)

magnetic field inside the shell. They then use a formula they propose for the calculation of

hidden momentum to show that the hidden momentum is the negative of that in the above

equation, resulting in zero total momentum. The formula they use, however, is just the

negative of the actual electromagnetic momentum and will always trivially cancel it.

The real problem is that the process by which such a system is assembled is ignored by

the authors. For example, you might start by bringing in electric charges from “infinity” to

form the uniformly charged shell. The exterior forces necessary to do this sum to zero, so

no momentum is added to the system. At the center of the shell is an object from which

a dipole may be made. Once again, the external forces that create the necessary charge

separation and hold the shell and dipole stationary are equal and opposite. Finally, a force

couple is employed to start the charged shell rotating about an axis that is not coaxial with

the dipole moment. Now you have a problem, as the dipole experiences a force due to the

increasing magnetic field, yet the system has been considered to be at rest for the purposes

of computation.

Consider the effect of imparting rotation to their shell of charge centered on a finite

dipole moment consisting of charges q and −q separated by a distance 2a. For purposes of

illustration, it is sufficient to examine the special case where the dipole moment points in the

y direction while the magnetic field increases from 0 to B in the z direction. The two dipolar
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charges, separated by the distance 2a, define the diameter of a circle of area πa2, whose area

is perpendicular to the magnetic field. The electric field due to the emf generated around

this circle is (1/2)aB/t, where the field increases from zero to maximum in a time t. This

results in a momentum impulse of (1/2)aB/t×2qt = (1/2)(2aq)B = (1/2)pB in the positive

x direction, as the point dipole moment, p, is formed by the usual limiting process. (The

product qa is held constant as q goes to infinity and a goes to zero. The impulse remains

constant during this process.) Generalizing to an arbitrary orientation of the electric dipole,

the impulse is (1/2)p×B.

Compared to Eqs. (34) and (49)of Babson et al, it is clear that, for their models, the

total momentum, electromagnetic plus mechanical, remains zero. The system recoils in the

positive x direction with a momentum that is equal and opposite to that contained in the

electromagnetic field. Thus the problem with the calculations of Babson et al3 is that they

ignore the momentum that appears due to the assembly of the system.

III. A SPHERE WITH A DIPOLAR SURFACE CHARGE AND A UNIFORM

SURFACE CURRENT DENSITY

This model is discussed in5 and consists in that reference of a uniform sphere of radius

R with a surface charge distribution given by

σ(θ, φ) = ksinθsinφ, (3)

where k is a constant and θ and φ are the polar and azimuth angles of the spherical coordinate

system centered on the sphere. The the electric dipole moment is given by6

p =
4π

3
R3kĵ. (4)

To complete the model a thin spherical shell with a uniform surface charge density σo,

rotating with angular velocity ωωω, encloses the sphere, is concentric with it, and has essentially

the same radius. The rotating charge results in a uniform surface current density given by

K = σoωωω ×R = σoωRk̂ × r̂

= σoωR(−sinθsinφî+ cosθsinφĵ). (5)

This surface current produces a uniform magnetic field inside the shell3,

Bo =
2

3
µoσoRωk̂, (6)
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and a dipolar magnetic field outside the shell3,

B =
µo

4πr3
[3(m · r̂)r̂ −m], (7)

with the magnetic moment given by

m =
4π

3
σoR

4ωk̂. (8)

This model is quite similar to the one of Babson et al3, but with point dipole replaced by

a charge distribution with dipolar symmetry. As in that model, the assembly of the system

and consequent momentum, should not be ignored. In this calculation the charged shell will

initially be at rest and contain a thin dielectric shell with essentially the same radius and a

dipolar surface charge density given by Eq.(3). Equal and opposite external forces hold this

configuration stationary. The dielectric shell will have an electric field in its interior given

by

Eo =
1

4πǫo

p

R3
. (9)

Outside this shell the electric field will be that of a dipole,

E =
1

4πǫo

1

r3
[3(p · r̂)r̂ − p]. (10)

There will also be an electric field outside of R due to the shell of uniform charge density like

that of a point charge at the center of the concentric shells. Once the uniformly charged shell

is rotating, it will produce a dipolar magnetic field outside R, but, since the contribution to

the electromagnetic momentum of this electric field and the dipolar magnetic field is zero,

these fields will be ignored.

Now have the outer, uniformly charged shell begin rotating, uniformly increasing its

angular speed from zero to ω. The angular acceleration will be small enough that radiation

effects can be ignored. The increasing rotation will produce a uniformly increasing magnetic

field inside the shell given by

Bo(t) =
2

3
µoσoRω̇tk̂, (11)

where ω̇ is the constant angular acceleration. The angular acceleration will continue until

the magnetic field reaches the value in Eq. (6).

The increasing magnetic field inside the shells will produce an emf there. By Faraday’s

law this emf will be

E = −
dΦ

dt
, (12)
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where Φ is the magnetic flux πR2sin2θ. The emf is directed in the negative φ̂ direction by

Lenz’ law, resulting in a Faraday electric field given by

E = −
E

2πRsinθ
φ̂ = −

1

2
RsinθḂo(−sinφî+ cosφĵ), (13)

where Ḃo is the time rate of change of Bo.

This electric field will exert a force on an element of charge

dq = σdA = (ksinθsinφ)(R2sinθdθdφ) = kR2sin2θsinφdθdφ, (14)

in the dipolar shell of

dF = Edq = −
1

2
RsinθḂo(−sinφî+ cosφĵ)(kR2sin2θsinφdθdφ). (15)

The integral of sinφcosφ over φ eliminates the ĵ term. The integral over φ of sin2φ yields

dF =
1

2
πR3Ḃosin

3θdθî, (16)

then the integral over θ gives

F =
2

3
πR3Ḃoî. (17)

Using the value for the electric dipole p in Eq. (4), the above equation becomes

F =
1

2
pḂoî, (18)

and since the force is the time rate of change of momentum, we finally have the impulse

applied to the dipolar shell as a result of the creation of the magnetic field,

P =
1

2
pBoî. (19)

This result obviously implies that, for an arbitrary orientation of the dipoles,

P =
1

2
p×Bo. (20)

The next job is to calculate the electromagnetic linear momentum stored in the electro-

magnetic field. There are two contributions: one due to the fields inside the shells and one

due to the dipolar fields outside the shell. Inside the shell Eq. (1) is just

Pin = ǫoEo(−ĵ)×Bok̂(
4

3
πR3) = −

1

3
pBoî → −

1

3
p×Bo. (21)
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The calculation of the electromagnetic momentum outside the shell is straight-forward and

was done by Babson et al3, their Eq. (33b). Their result is

Pout = −
1

6
p×Bo. (22)

Summing up Eqs. (20), (21), and (22) to get the total momentum, you see that it is zero

without the necessity of appealing to hidden momentum.

IV. LINEAR MOMENTUM OF A POINT CHARGE IN THE VICINITY OF A

MAGNETIC DIPOLE

In this section I revisit the calculation by Furry4 of the linear electromagnetic momentum

of a point charge in the vicinity of a magnetic dipole. The basic setup is indicated in Fig.

3. However, instead of having a magnet that is unpolarized, I will replace Furry’s magnet

FIG. 1. A charge q in the vicinity of a magnetic moment m and the induced dipole moment p.

with a conducting spherical shell of radius b that can carry a current and be polarized by

an external charge. (I treated the case of a non-polarizable magnet here7). The system is

assembled by having a positive point charge q move from a great distance along the x axis

in the positive x direction to a position x = −a. It will polarize the small conducting shell
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located at the origin distance a from the point charge with an electric dipole given by Eq.

(4), which will produce a uniform electric inside the shell given by Eq. (9). (In order to be

more in concert with Furry’s notation, I’ve replaced R with b.)

Once the point is in place, an external agent creates a uniform surface current in the

conducting sphere. This will produce a magnetic field inside the sphere given by Eq. (6),

and a magnetic dipole given by Eq. (8). The changing magnetic field at the location of the

point charge will produce an impulse on the charge given by2

∆P =
1

2
p×Bo. (23)

(This is one-half the amount given in the above reference due to the presence of one charge

here instead of two.) Another impulse is imparted to the shell due to the changing magnetic

flux inside the shell. This is given byEq. (19). This is of the same magnitude and direction as

the impulse to the charge, hence the total impulse received by the system during assembly is

p×Bo. To keep the charge stationary, an external agent must exert a force on it, receiving an

impulse equal to this. Now the question is whether or not the electromagnetic momentum

in the charge-magnet system is equal is equal and opposite, as it has to be for the total

momentum to remain zero.

There are three contributions to the electromagnetic linear momentum: that due to the

field of the external charge and dipolar magnetic field outside the shell, that due to the

uniform fields inside the shell, and that due to the external dipolar magnetic field with

the external dipolar electric field of the shell. All these have previously been calculated.

Respectively, they are, −(1/2)p × Bo
4; −(1/3)p × Bo, Eq. (21); and −(1/6)p × Bo, Eq.

(22). These add up to −p×Bo, and momentum is conserved.

V. A ROTATING MAGNETIC DIPOLE IN A UNIFORM ELECTROSTATIC

FIELD

This example was explored by Mansuripur8. He considers a slowly rotating magnetic

dipole at the origin of a Cartesian coordinate system, rotating in the x-y plane:

m(t) = mo[cos(ωt)̂i+ sin(ωt)ĵ], (24)

where ω is the angular speed of rotation and mo is the magnitude of the dipole moment.

The dipole is positioned between two infinite parallel non-conducting plates, each parallel
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to the y-z plane, and each a distance d/2 from m along the y axis. Hence the plates are

a distance d apart with the rotating dipole halfway between them. The plate at x = −d/2

has a uniform surface charge of σ, and the plate at x = d/2 has a uniform surface charge

−σ. The uniform electric field between the plates is given by

E =
σ

ǫo
î. (25)

Mansuripur calculates the oscillating force acting on the plates due to the induced electric

field resulting from the time rate of change of the magnetic field of the dipole. His result is

F (t) = −σmoωcos(ωt)k̂. (26)

He also calculates the oscillating force on the magnetic dipole in the Einstein-Laub9 formu-

lation and shows that it is equal and opposite to the force on the plates, conserving linear

momentum.

Next, Mansuripur addresses the same system in the Lorentz formulation. He notes that

in this formulation there is no force on the dipole due to the electric field, in contradiction

to that found for Einstein-Laub. However, he notes there is an oscillating electromagnetic

linear momentum in the electromagnetic fields given by

pem = ǫoE ×m = σmosin(ωt)k̂. (27)

The time rate of change of this momentum would appear to account for the force in Eq.

(26) satisfying momentum conservation, but he rejects this interpretation, citing references

that claim there is hidden momentum in magnets residing in electric fields. However, I have

shown that there is no hidden momentum in a magnet in an electric field7. To accomodate

the idea of hidden momentum, he has to invent a force acting on the dipole in the Lorentz

formulation, although the source of this force is obscure. It is simpler to just conclude the

time changing momentum in the electromagnetic fields cancels the force on the plates such

that no hidden momentum is invoked.

I haven’t yet addressed the assembly of this system. In previous examples it has been

shown that the assembly is key to understanding why hidden momentum does not exist

in these examples. However, for this example there is a slowly rotating magnetic dipole

creating a quasi-static situation. Let the dipole be originally non-rotating and then apply

a gentle torque to gradually spin it up. If the spin-up is slow enough the quasi-sinusoidal
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nature of the motion will largely lead to cancelation of momentum and forces in the system

when averaged over the time involved to bring the dipole to its final slow rotation. Hence

assembly of the system is negligible if the spin-up occurs over a sufficiently long time.
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