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Abstract

In this paper I attempt to resolve several paradoxes in electromagnetic theory that continue to

be the subjects of dispute among some physicists, although the conventional wisdom of the physics

community appears to consider them solved. The concept of hidden momentum has been employed

to explain a number of these puzzles, but the existence of hidden momentum has been seriously

questioned. I show several paradoxes can be resolved without appealing to hidden momentum.
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I. INTRODUCTION

In 1891 J.J. Thompson pointed out an apparent paradox1 where electromagnetic systems

at rest could contain non-zero electromagnetic momentum. In 1967, Shockley and James2

examined a charge-magnet system and were puzzled by the apparent lack of momentum

conservation. There was linear momentum in the electromagnetic fields but the system was

at rest, containing no mechanical momentum. They thought there had to be a hidden form

of mechanical momentum in the magnet to preserve momentum conservation. The idea

of this so-called ”hidden momentum” has been employed to solve numerous problems and

paradoxes in addition to the original paradox Shockley and James identified2.

Hidden momentum can also be a problem in solving paradoxes. Vaidman3 solved a so-

called paradox of a current loop moving in a uniform electric field. Even if the resolution

were correct in itself, the presence of hidden momentum in the loop claimed by Vaidman,

spoils the the resolution.

The Mansuripur paradox4 involving a charge-current loop system provoked an extended

discussion in the literature and was thought to be solved by invoking hidden momentum in

the current loop5. Mansuripur pointed out there was no torque observed on an Amperian

magnet in the vicinity of an electric charge in the rest frame of the charge-magnet system,

but there was a torque seen by an observer moving with respect to the system. He argued

this situation negated the Lorentz force law, which he said should be replaced by the force

law of Einstein and Laub6. His critics5 argued that if you take hidden momentum in the

magnet into account you can preserve the Lorentz force.

Aharonov and Casher7 proposed that there was an interaction between Amperian dipoles

(such as a current loop) and a line of electric charge analogous to the Aharanov-Bohm effect8.

In the latter effect there is a phase difference between the wave functions of charged particles

passing opposite sides of a solenoid. In the Aharonov-Casher effect the phase difference is

between the wave functions of neutral Amperian dipoles passing opposite sides of a line of

charge. It was proposed this effect could be seen experimentally for neutrons, assuming

they behaved as Amperian dipoles. In both effects it is supposed there is no force between

the solenoid and the charges on the one hand and none between the line of charge and the

dipoles on the other.

Although the Aharonov-Bohm effect has been experimentally demonstrated (see, for ex-
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ample, Chambers9), Boyer10 has disputed the quantum nature of the Aharonov-Casher effect

by calculating a force on a dipole passing a line of charge, assuming an electric dipole is

induced on the moving magnetic dipole. In response, Aharonov et al.11 claimed hidden mo-

mentum in a magnetic dipole immersed in an electric field7 was responsible for neutralizing

the force on the induced electric dipole.

A few authors have argued that hidden momentum in magnets subject to an electric

field does not exist4,12–15 This calls for an effort to revisit the various paradoxes supposedly

solved by hidden momentum. In this paper I address the paradoxes described above and

show there is a resolution for each one without appealing to hidden momentum.

II. THE PARADOX TREATED BY VAIDMAN

In this paradox (which I will call the ”Vaidman paradox” for brevity, although it was

treated prior to the paper by Vaidman by Bedford and Krumm16 and by Namias17) there is

a current loop oriented parallel to the y-z plane with its magnetic moment µ = µî pointed

in the positive x direction. The space containing this magnet is filled with a uniform electric

field in the positive z direction (E = Ek̂). This ring of current is moving with a constant

velocity in the positive x direction (v = vî) in the lab frame S. In the moving S’ frame –

the rest frame containing the current loop – the transformed fields are

E′ = γE = γEk̂, (1)

and

B′ = −γv ×E/c2 = γ(v/c2)Eĵ (2)

where

γ = (1− v2/c2)−1/2. (3)

The presence of the magnetic field in the S’ frame means there is a torque on the current

loop given by

τ ′ = µ′
×B′ = µ(v/c2)Ek̂, (4)

where the term on the far right uses the slow-motion approximation; that is, γ = 1 (v << c),

meaning µ′ = µ and E′ = E. This approximation will be employed for the rest of this

section.
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The problem is there is no magnetic field in the S frame and therefore (presumably) no

torque. Why is it that an observer in S’ records a torque that is not observed in the S frame?

Vaidman resolved the paradox for his model (iii), which consists of a ”charged incompress-

ible liquid moving inside a neutral tube”. Franklin13 pointed out a flaw in that resolution.

There should be no electric field inside the charged liquid and, with no electric field, there

would not be a magnetic field from a Lorentz transformation of the electric field either.

There will be induced charges on the conducting material due to its immersion in the elec-

tric field, but these are stationary in S’ and so do not interact with the magnetic field.

For this magnet model there is no torque in either the S or S’ frames. However, Vaidman

considers there to be linear hidden momentum in the current loop. I will show how this

spoils his resolution even if it were valid. There is a general resolution, described below,

that applies to any Amperian dipole model, including a current loop like that of Shockley

and James2 where there is no conducting material.

The torque on the ring is the time rate of change of its angular momentum in the rest

frame (S’) of the loop. The hidden linear momentum, if present, appears in the angular

momentum four-tensor in the y-ct slot with its negative in the ct-y slot. (See the follow-

ing equations.) These slots contain the y component of the linear momentum multiplied

by ct, where t is the time coordinate in the frame of the tensor. The time integral of

the magnetically-produced torque and its negative appear in the x-y and y-x slots, respec-

tively, home to the z component of the angular momentum. When the angular momentum

four-tensor is Lorentz-transformed to the S frame, you obtain a four-tensor containing the

transformed z-component of the S’-frame torque plus a contribution from the hidden linear

momentum. If the z component of the angular momentum is zero in the S’ frame, it will

not be zero in the S frame and the resolution of the paradox breaks down. The details are

as follows.

The angular momentum four-tensor is given by

Lµν =















0 Lz −Ly mcx− ctpx

−Lz 0 Lx mcy − ctpy

Ly −Lx 0 mcz − ctpz

mcx+ ctpx mcy + ctpy mcz + ctpz 0















. (5)

Here, L is the angular momentum of the system, p its linear momentum, m is the system

mass, (x, y, z) is the point about which the angular momentum is taken, c is the speed of
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light, and t is the time in the rest frame of the system. The hidden linear momentum in the

ring in the S’ frame is given by Vaidman as3

Phidden = −
1

c

∫

φJdV = µ×E/c2 = −µE/c2ĵ), (6)

at t = 0 (t = t′ in the slow-motion approximation and the S and S’ axes are taken to

coincide at t = 0) when the (possibly rotating) magnetic moment is parallel to the x axis.

J is the current density in the loop and φ = −zE is the electric potential. (According to

the above equation, the hidden momentum will change direction if µ rotates.) According to

Vaidman the angular momentum about the center of the loop at t = 0 is zero. The angular

momentum four-tensor in S’ at t = 0 is therefore

dLµν =





















0 0 0 0

0 0 0 µEdt/c

0 0 0 0

0 −µEdt/c 0 0

.





















(7)

The Lorentz-transformed four-tensor will contain

dLz = −(v/c2)µEdt (8)

in the x-y slot. The time derivative of this equation gives

dLz/dt = −(v/c2)µE, (9)

such that the torque is nonzero in the S frame due to the hidden momentum. So, we are

back to the paradox of there being a torque in one frame and not in another.

The problem is no hidden momentum exists in the ring in S’. I have shown14 that you

cannot apply an electric field to a magnet without imparting mechanical linear momentum to

it unless the magnet is held stationary by an external agent. In that case the external agent

is the recipient of the linear momentum. In both cases electromagnetic linear momentum

is produced which is equal and opposite to the mechanical linear momentum. If you let

the magnet gain linear momentum, you will need to move to its new rest frame to see the

mechanical momentum is zero and the electromagnetic momentum is not. This is what

Shockley and James2 identified as a paradox, but it was really just viewing the system in a

rest frame different from that in which the electric field was applied to the magnet.
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To get the correct resolution of Vaidman’s paradox, consider the following scenario. Imag-

ine there is an observer in a uniform magnetic field. The magnetic field is into the plane of

the page and there is a nonconducting rod with two equal and opposite charges at the ends

moving from left to right with the positive charge leading. An observer moving with the

rod sees an electric field due to the Lorentz transformation of the magnetic field. She will

see the electric field directed upwards on the page such that there is an upward force on the

positive charge and a downward force on the negative charge. There will be a torque acting

on the rod with its axis directed out of the plane of the page. An observer at rest with the

magnetic field, however, does not detect an electric field. Why then should he see a torque

acting on the rod? But he does.

No one to my knowledge considers the above scenario to be a paradox – just the man-

ifistation of the Lorentz force. But the Lorentz force is due to a Lorentz transformation

exactly like the case where the current loop is moving through a uniform electric field and

experiencing a torque. In other words, this so-called paradox is not a paradox at all.

For the dipole model of Shockley and James2 there will be a torque acting on the dipole

in the S’ frame. There will also be a torque seen to be acting on the dipole in the S frame.

In the fully relativistic case the torque in the S frame is multiplied by γ. However, the mass

and therefore the moment of inertia also increase by a factor of γ so the angular motion is

the same in both frames.

This argument brings up another point. It should be clear that you cannot create an

interaction in a system where there is none by merely performing a Lorentz transformation.

To do so would violate the principle of relativity. Neither can you Lorentz-transform away

an interaction in a system. The interaction involving the magnetic field and the magnet in

the S’ frame cannot be transformed away by observing the system in the S frame.

III. THE PARADOX POSED BY MANSURIPUR

The paradox posed by Mansuripur in 20124 generated a sensation among a lot of physicists

who worked in electromagnetic theory5. A flurry of comments and papers resulted, most

of which appealed to hidden momentum as the solution to the paradox18–21. But if hidden

momentum is not present in a charge-magnet system, some other resolution must be found.

In this paradox you have a charge in the vicinity of a magnet. In the rest frame of the

6



charge-magnet system, there is only an electric field at the location of the magnet. If the

current loop is neutral, there will be no force or torque on the magnet. However, imagine

the system is moving in the lab frame where there is an observer. The observer, according

to the usual view, detects an electric field due to a charge separation – that is, a dipole – on

the magnet. The observer also sees the (transformed) electric field of the charge. Therefore,

there should be a torque acting on the electric dipole and thus on the magnet in his frame

that is not seen in the rest frame of the charge-magnet system.

Mansuripur claimed that the Lorentz force should be replaced with that of Einstein-

Laub6 to solve the paradox. But, if there is no charge separation on the magnet, there

will be no torque observed in either frame and no need to invoke the Einstein-Laub force.

The resolution involves the recognition that there is no electric dipole induced on a moving

magnetic dipole22 as was recently also pointed out by Franklin23.

Imagine a rectangular current loop in frame S’ with its length l′ parallel to the x axis

and moving in the negative x direction with speed v in the lab frame S. (See Figure 1.) A

positive current I ′ is circulating in the rest frame of the loop such that it is flowing to the

left in the upper side of the loop. There are n′ positive charge carriers per unit length in

the loop, each with a charge e, and an equal linear density of negative (−e) fixed ions. The

average drift speed of the charge carriers is u′ in the loop’s rest frame, such that an observer

moving along with the loop sees a positive current given by

I ′ = γu′en′u′, (10)

with

γ′

u =
1

√

1−
u′2

c2

. (11)

In the lab frame the drift speed in the upper wire due to relativistic velocity addition would

be

u =
u′ + v

1 +
u′v

c2

− v =
(c2 − v2)u′

c2 + u′v
, (12)

and a current I exists given by

I = enu = e(n′γu+v)
(c2 − v2)u′

c2 + u′v
=

γu′

γv
en′u′, (13)
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FIG. 1. The apparatus described in the text as observed in its rest frame (S’). It is moving in the

negative x direction with speed v in the S frame. (The primed values refer to the moving frame.)

where

n = n′γu+v = n′
1

√

1−
(u+ v)2

c2

= n′
c2 + u′v

√

(c2 − v2)(c2 − u′2)
= n′γu′γv

c2 + u′v

c2
, (14)

and

γu+v =
1

√

1−
(u+ v)2

c2

=
c2 + u′v

√

(c2 − v2)(c2 − u′2)
, (15)

Now imagine that there are observers in the lab frame, lined up to observe the current in

the upper wire as it passes each of their positions. Borrowing an example of the relativity

of simultaneity from Wolfgang Rindler’s book, Relativity: Special, General, and Cosmolog-

ical24, imagine that there is a laser pulse generator located halfway along the wire which

projects identical pulses of sufficient briefness at the same time in opposite directions to-

ward receivers on each end of the wire. In the lab frame the pulse will approach the leading

8



receiver at a relative speed of c− v and the trailing receiver at a relative speed of c+ v. The

distance the pulses travel will be the Lorentz-contracted distance l′/2γv, where

γv =
1

√

1− v2

c2

. (16)

Hence, observer B who is abreast of the trailing receiver when the pulse arrives will record

a time of arrival of

t =
l′

2γv(c− v)
−

l′

2γv(c+ v)
= γv

vl′

c2
(17)

earlier than that of observer A at the leading receiver when the pulse arrives there. Therefore,

by her estimation, an amount of charge given by

q = I(t− 0) =

(

γ′

u

γv
en′u′

)(

γv
vl′

c2

)

= γu
uv

c2
enl (18)

has flowed past her position before the observer at the leading receiver sees the arrival of the

pulse, using Eq. (13) for I. That is, observer A has not seen this charge pass his position

when the pulse arrives.

The observers in the lab frame must conclude, upon comparing notes, that there was

an excess charge on the wire when the pulses arrived at their positions compared to the

situation in the S’ frame where the pulses arrived simultaneously. They find the excess

linear charge density on the wire to be given by

e∆n =
q

l′/γv
= γvγ

′

u

u′v

c2
en′ (19)

in their reference frame. They realize that this extra charge was not present in the traveling

frame and was only seen in their frame due to the effect of the relativity of simultaneity.

Hence this is not a real buildup of charge on one side of the loop. The appearance of extra

charge is due to the fact the arrival of the pulses was not simultaneous in both reference

frames. This extra charge density is what is needed to give the improperly deduced radial

electric field found by a misapplication of Gauss’ law to a moving line of current (by applying

the law as if both ends of the cylindrical Gaussian surface have the same time in both the

moving and at-rest frames22).

The same conclusion was reached by Franklin23 by observing that in a typical analysis

an electric dipole is inferred on a moving magnetic dipole because, although the current

density is Lorentz-transformed from the moving frame to the lab frame, the time and position
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coordinates of which the current density is a function are not. This error also ignores the

relativity of simultaneity.

There is a subtlety here, however. As Furry25 has shown, there is angular and linear

momentum in the field of a system consisting of a point charge and an Amperian magnet,

given in the rest frame (S’) of the charge-magnet system of Mansuripur by, respectively,

L′ =
µoqµ

′

4πγa
=

µoqµ
′

4πγa
k̂ and P ′ =

1

c2
E′

× µ′ = −
µoqµ

′

4πγ2a2
ĵ, (20)

where the angular momentum is taken about the center of the magnet. Here, q is the point

charge at the origin of the S’ coordinate system, µ′ is the magnetic moment of the magnetic

dipole, the magnetic dipole is on the x′ axis at x′ = γa with its moment in the positive z′

direction, and E′ is the electric field at the location of the dipole.

The angular-momentum four-tensor in the S’ frame has non-zero components given by

Lz′ = L1′2′ = −L2′1′ =
µoqµ

′

4πγa
and L2′4′ = −L4′2′ = −ct′Py′ , (21)

where Py′ is the linear momentum in the y′ direction,

Py′ = −
µoqµ

′

4πγ2a2
. (22)

When this quantity appears as a space-time component in the angular momentum four-

tensor, it depends on time. Transforming the tensor

Lµ′ν′ =















0 Lz′ 0 0

−Lz′ 0 0 −ct′Py′

0 0 0 0

0 ct′Py′ 0 0















(23)

to the S frame gives the component Lz = L12 as

Lz = γL1′2′ + γ
v

c
ct′Py′ = γ(L1′2′ + vt′P ′). (24)

The time derivative of this gives the time rate of change of the angular momentum, which

is the torque involved. With t = γt′, this torque is

dLz

dt
= vP ′ = −

µovqµ

4πa2
, (25)

where µ = γµ′.
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This torque resides in the electromagnetic field. Where is the equal and opposite torque

in S necessary to maintain conservation of angular momentum? There is no torque in the

S’ frame, so the torque must also be zero in the S frame. It turns out that the torque that

counters this is the torque purported to be mechanical and to arise from the interaction of

the point charge with the induced electric dipole in the moving frame.

However, I have shown26 that the counter torque resides in the electromagnetic field

and arises from the interaction of the charge q with the magnetic dipole and not with the

non-existent electric dipole. The interaction of the electric field of the point charge with

the current density in the magnet produces a force density in the time slot of the Lorentz

force-density four-vector. This is an important observation as it implies the force density is

in the field. The force density is given by26

fct′ =
J1′E1′

c
+

J2′E2′

c
, (26)

where Jµ′

= ρ′u′(−sinφ′, cosφ′, 0, 0) is the current density in the x′-y′ plane and Eµ′

, the

electric field at the location of the dipole, has components given approximately by26

E1′
≈

q(γa+R′cosφ′)

4πǫoγ3a3
and E2′

≈
qR′sinφ′

4πǫoγ3a3
. (27)

ρ′ is the charge density of the current, u′ is the drift speed, R′ is the radius (R′ << a) of the

current loop, and φ′ is the azimuth angle centered on the dipole. When the force-density

four-vector is transformed to the S frame, it is

fµ = (γ
v

c
fct′ , 0, 0, γfct′), (28)

where v is the speed of S in the x direction with respect to S’. It can be shown26 that the

net force in the S and S’ frames is zero.

However, the torque is not zero. You can now calculate the torque in S’ frame as

τ 2
′4′ =

∫

V ′

(y′fct′ − ct′f ′

y)dV
′ =

∫

V ′

y′fct′dV
′ =

R′2λ′u′

c

∫ 2π

0

(

−
q(γa+R′cosφ′)

4πǫoγ3a3

)

sin2φ′dφ′

= −
λ′(u′/c)qπR′2

4πǫoγ2a2
, (29)

where the substitution ρ′dV ′ = λ′R′dφ′ has been made in the integral with λ′ as the linear

charge density of the charge carriers and y′ = R′sinφ′. This torque, in a space-time slot,

gives rise to a torque about the z axis when transformed to the S frame as follows,

τz = τ 12 = γ
v

c
τ 4

′2′ = γ
v

c
(−τ 2

′4′)

=
µovqµ

4πa2
, (30)
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where the magnetic moment in the S frame is µ = γµ′ = γI ′πR′2, and I ′ = λ′u′. This torque

is also in the electromagnetic field and cancels the torque in Eq. (25).

IV. AHARONOV-CASHER EFFECT

Working with an analogy to the Aharonov-Bohm effect where quantum interference oc-

curs between charged particles traveling on either side of a solenoid, Aharanov and Casher

proposed the same effect would be seen for magnetic neutral particles traveling on either

side of, for example, a line of charge7. The proposed Aharonov-Casher (AC) effect included

the proposition that neutrons would not experience a force while moving in an electric field.

Neutrons passing either side of the line of charge with their magnetic moments parallel to

the line and to each other would experience unequal phase shifts in their wave functions –

what is called a ”topological quantum effect” – resulting in a phase difference of

∆φ = µoλµ/~, (31)

where λ is the linear charge density, µ is the magnetic moment of the neutron, and ~ is the

reduced Planck’s constant. This would appear as a diffraction pattern in an experiment.

Boyer10 disputed the notion that a neutron in an electric field would not experience a

force. Instead, he argued that a moving neutron, modeled as an Amperian magnet, would

sport an electric dipole p which would experience a force in an electric field E given by

F = (p · ∇)E. (32)

With an electric field given by that due to a line of charge,

E =
λ

2πǫor2
r, (33)

where r = xî+yĵ measured from the line of charge, Boyer computed a force on the neutron

given in SI units by

F =
µoµλvo
2πr4

[

(y2 − x2)̂i− 2xyĵ
]

. (34)

The force is that on a neutron with its magnetic moment parallel to the line of charge (in

the positive z direction) moving in the positive y direction with speed vo. The electric dipole

in this case is given by p = µvo/c
2î.

12



Boyer considers two such neutrons traveling in the positive y direction with speed vo, one

at x = +a and one at x = −a. He assumes the paths will not vary much from straight lines,

an assumption that seems justified considering that µoµ/2πm = 1.15× 10−6 J·m/A·kg. He

finds that a neutron passing on the positive x side of the wire is delayed with respect to one

passing on the other side by an amount ∆y = µoµλ/mvo, which results in the same phase

shift as found by Aharonov and Casher in Eq. (31) given above. Hence Boyer claims the

phase shift of the AC effect is due to classical lag rather than a quantum topological effect.

Arahonov et al.11 responded that Boyer overlooked the effect of hidden momentum in the

charge-magnet system. They equated the net force acting on the neutron (their equation

(6)) to that acting between the line of charge and the induced electric dipole plus that due

to the supposed rate of change of the hidden momentum and found that the net force on

the neutron is zero, thus refuting Boyer’s argument.

Mansuripur27 argued that hidden momentum was not necessary to show the AC effect

was not due to a classical lag, appealing to the use of the Einstein-Laub force6 instead of the

Lorentz force. However, he still assumed there was an electric dipole induced on the moving

magnetic dipole. Since there is neither hidden momentum12–15 in an charge-magnet system

nor an electric dipole on a moving magnetic moment22,23, the AC effect needs another look.

I have shown14 that you have to take into account how a charge-magnet system is formed

to understand its momentum; that is, by applying an electric field to a magnetic dipole or

forming a magnetic dipole in a pre-existing electric field. When this is done mechanical

momentum is imparted to both the source of the electric field and the magnet in equal

amounts and in the same direction (unless the components are held statationary by an

external agent).

When a point charge moves into the vicinity of a small Amperian magnet the magnet

gains an amount of mechanical linear momentum14 µ×E/2c2, where the line between the

charge and the dipole is perpendicular to the magnetic moment. An equal amount is gained

by the charge. The momentum is the result of the operation of Lorentz forces. An amount

of momentum opposite and equal in magnitude to that gained by both the charge and the

magnet is deposited in the electromagnetic field. The force on the magnet is proportional

to the displacement current at the location of the dipole, which is twice as large for a line
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of charge as for a point charge. Hence the momentum gained by the magnet in this case is

Pm = µ×E/c2. (35)

As the magnet moves through the field, the mechanical momentum will in general change

with time as Lorentz forces act on the magnet. An equal change in momentum will occur

to the line of charge (or to its support). An equal and opposite change in electromagnetic

field momentum will occur at the same time. With the electric field given by Eq. (33), the

force on the magnetic dipole given by dPm/dt in x and y components is, respectively,

Fx =
µoµλ

2πr2

[

2

r2
(r · v)y − ẏ

]

= mẍ, (36)

and

Fy =
µoµλ

2πr2

[

−
2

r2
(r · v)x+ ẋ

]

= mÿ. (37)

Here v is the velocity of the magnet and m is the magnet’s mass. When you make the same

assumptions as Boyer (initial velocity = ẏĵ = voĵ and x = ±a), these equations become

Fx = −
µoµλvo
2πr4

(y2 − a2) = mẍ, (38)

and

Fy =
µoµλvo
2πr4

(2± ay) = mÿ. (39)

If you follow the same argument as Boyer, you would come up with an AC phase shift the

same as was found by Aharonov and Casher and by Boyer.

To clarify this picture, you can recast the force equations in terms of polar coordinates.

The force equation is then

F = −
µoµλ

2πr2
(rφ̇r̂ + ṙφ̂) = m[(r̈ − rφ̇2)r̂ + (2ṙφ̇+ rφ̈)φ̂]. (40)

An obvious solution is when the magnetic dipole is stationary, achieved by using mechanical

force to place the dipole at rest in the electric field. A more interesting solution occurs when

r is constant. The equation reduces to

µoµλ

2πr2
r̂ = mrφ̇r̂. (41)

According to this equation, the magnet can execute a circle in the counterclockwise direction

(assuming λ is positive) with an angular speed of

ω =
µoµλ

2πmr3
. (42)
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The circumference of the orbit where the speed of the dipole is v = ωr is

2πr =
µoµλ

mv
. (43)

This is the same as the lag found by Boyer and again confirms that the AC effect is due to

a classical lag rather than a quantum effect.

V. CONCLUSIONS

Hidden momentum is not present in charge-magnet systems12,14 and cannot be invoked

to solve electromagnetic paradoxes. In the case of the paradox treated by Vaidman and

others3,16,17, there really is no paradox. Just because a Lorentz-transformed field is not

observed in a particular reference frame, does not mean the interaction of the field with

systems in the reference frame cannot be observed. Just as you can observe the Lorentz

force on a charge moving in a magnetic field without being able to measure the Lorentz-

transformed electric field acting on the charge, you can also observe the torque on a magnet

moving in an electric field without being able to measure the Lorentz-transformed magnetic

field.

In the case of the Mansuripur paradox4, the lack of an electric dipole induced on a moving

magnetic dipole means the magnetic dipole does not experience a torque as a result of an

electric field acting on the non-existent electric dipole22,23. There is therefore no need to

replace the Lorentz force with that of Einstein and Laub6 in this case.

There are torques in the electromagnetic field of the frame in which the charge-magnet

system of Mansuripur’s paradox is moving. One is due to linear momentum in a space-time

component of the angular momentum four-tensor in the rest frame of the system Lorentz-

transformed to the moving frame. The other is due to the interaction of the charge with

the electric current in the magnet in the system’s rest frame, again due to a space-time

component, this time in the torque four-tensor Lorentz-transformed to the moving frame.

These are not mechanical torques and cancel out in the moving frame.

The analysis of Boyer10 that the Aharonov-Casher effect is due to a classical lag appears

to be correct in principle, except that the force on the magnet traveling through the electric

field is not due to the electric field interacting with an induced electric dipole on the moving

magnet, but rather is due to the changing mechanical momentum of the magnet (and an

15



opposite change in the field momentum) as it moves through the electric field.
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