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There have been controversies in the physics literature over questions concerning systems

consisting of magnets and electric fields for over 100 years, and not all have been set-

tled to everyone’s satisfaction. In particular it has been accepted for over 50 years that

Amperian magnets in electric fields contain hidden mechanical momentum and an electric

dipole is induced on a moving magnetic dipole. The physics literature is filled with ref-

erences to these claims; they show up in widely used textbooks and are invoked to solve

electromagnetic paradoxes. However, I show that these claims violate special relativity and

momentum conservation, and controversies are solved without them.

1



I. INTRODUCTION

It has been known for a long time that electromagnetic fields can contain both linear and angular

momentum1,2. The linear electromagnetic momentum per unit volume in free space is given in SI

units by

℘℘℘em = εoEEE ×BBB, (1)

where εo is the permittivity of free space, EEE is the electric field, and BBB is the magnetic field. The

quantity of linear electromagnetic field momentum in a region of space requires a volume integral

of Eq. (1) over that region. The electromagnetic angular momentum density about a certain point

involves taking the vector product between a position vector centered on that point and the linear

momentum density at a point in space, that is,

lllem = εorrr× (EEE ×BBB). (2)

Once again you must integrate over a volume of space to find the electromagnetic angular momen-

tum in that space.

This article is concerned with linear and angular momentum of isolated electromagnetic sys-

tems in free space. There are a number of paradoxes associated with these systems that haven’t

been resolved to everyone’s satisfaction. In what follows I will examine momentum in electro-

magnetic systems containing magnetic dipoles and show that the ideas of hidden momentum and

induced electric dipoles on moving magnetic dipoles violate special relativity and momentum con-

servation. Controversies and paradoxes can be solved without these erroneous concepts.

II. MOMENTUM IN A CHARGE-MAGNET SYSTEM

A. An Unshielded Magnet

In 1969 Furry3 calculated the electromagnetic linear and field angular momentum in charge-

magnetic dipole systems for both an Amperian magnet where the magnetism is produced by elec-

tric current and a magnetic-pole model where the magnetism is produced by a pair of magnetic

poles. In his calculation of linear field momentum involving an Amperian magnet, a magnetic

dipole consisting of a uniformly magnetized sphere where the magnetization is due to a surface

current was situated at the origin of a Cartesian coordinate system with its dipole moment µµµ di-

rected at an arbitrary angle in the x-z plane. (The specific magnet model was necessary to avoid a
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mathematical singularity at the location of the magnet.) A point charge q was located at z = a. He

found the linear field momentum of a charge-Amperian magnet system to be

pppem =
µoq

4πa3
µµµ ×aaa = EEE ×µµµ/c2, (3)

where the second expression on the right assumes the electric field is uniform over the extent of

the magnetic dipole (small dipole approximation). If the magnet is due to a pair of isolated poles,

he found the linear field momentum to be zero. He also found that any distribution of electric field

and magnetic-pole pairs would have zero field linear momentum.

The field angular momentum about the location of magnet (this time with no need for a specific

magnet model such as the uniformly magnetized sphere) was found to be

LLLem = aaa× pppem =
µoq

4π

[

µµµq

a
−

(µµµ ·aaa)aaa

a3

]

. (4)

When the electric field is perpendicular to the magnetic moment, the field angular momentum is

LLLem =
µoqµµµ

4πa
. (5)

In contrast to the case of linear momentum, the field angular momentum was the same whether

the magnetic dipole was Amperian or a magnet-pole pair.

The presence of linear and angular electromagnetic field momentum in a system consisting of

a point charge and a magnetic dipole is hard to understand unless there is some way to balance the

field momentum with mechanical momentum. This was what Shockley and James4 set about to do

in their 1967 paper where their model consisted of an Amperian magnet made of non-conducting

material and two oppositely charged point particles equidistant on either side of the magnet and

where the magnetic moment was perpendicular to the line between the two charges.

The two oppositely charged particles guaranteed that there would be no field angular momen-

tum about the point where the magnet was located. With this model they only attempted to propose

the presence of (hidden) mechanical linear momentum in the magnet equal and opposite to the lin-

ear field momentum.

However, they made an error in identifying mechanical momentum in their model by ignoring

how it was assembled. I have shown5 how linear mechanical momentum is imparted to the model

of Shockley and James by bringing the two opposite charges in from a great distance to the vicinity

of the magnetic dipole. This momentum is transferred to an external agent if that agent exerts

mechanical forces to balance the Lorentz forces acting on the charges and magnet.
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Here, I will bring a single charge in from a great distance to the vicinity of an Amperian mag-

netic dipole to show that the linear and angular mechanical momentum generated is equal and

opposite to that found by Furry3. As the point charge q is moved toward the magnetic dipole, it

experiences a Lorentz force, and the dipole will experience an equal Lorentz force. In this calcu-

lation both forces will be countered by an external agent such that the magnetic dipole remains

stationary and the point charge moves in a straight line to its final position near the magnet. This

is so that the charge and dipole end up in the same configuration as in Furry’s calculation. The ex-

ternal agent will therefore be the recipient of the momentum generated by the Lorentz forces. The

forces involved in assembling the system are equal and opposite so that the momentum parallel to

the motion of the charge remains zero.

To keep the mathematics simple for the sake of argument, I will have the electric field perpen-

dicular to the magnetic moment. The magnetic dipole will be at the origin of the coordinate system

with its moment pointing in the positive z direction. The point charge will be moved slowly (to

avoid any radiation from acceleration) from a great distance along the negative x axis in the posi-

tive direction to a point x =−r, where r is the distance between charge and magnet. The magnetic

field at the location of the charge as it moves along the x axis is

BBB =−
µoIA

4π|x|3
k̂kk, (6)

such that the Lorentz force on the charge is

FFFL = qvîii× (−
µoIA

4π|x|3
k̂kk) =

µoqIAv

4π|x|3
ĵjj, (7)

where I is the current in the Amperian dipole, A is the area of the current loop, v = dx/dt is the

speed of the charge, and the magnetic moment is µµµ = IAk̂kk.

The impulse imparted to the charge as it moves along the x axis from x =−∞ to x =−r can be

calculated as follows5.

PPPq =
∫ −r

−∞
FFFLdt =−

µoqIA

4π
ĵjj

∫ −r

−∞

dx

x3
= µµµ ×EEE/2c2, (8)

where EEE is the electric field at the location of the dipole in the small dipole approximation.

There has been some controversy over the correct formula for calculating the force on a mag-

netic dipole in a magnetic field6–8, so I will calculate it from a more fundamental perspective. The

result is the same as that found from the traditional formula, given by

FFF = ∇(µµµ ·BBB), (9)
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the formula Franklin has argued is correct6. The moving charge q produces a magnetic field at the

dipole. This is the magnetic field to be used in the above equation to calculate the force.

The force can be calculated from the magnetic field produced by the displacement current

acting on the charge current of the magnet (Figure 1). In the slow-motion approximation where,

γ =
1

√

1− v2/c2
= 1, (10)

the displacement due to q at the magnetic dipole is

DDD =
1

4π

q

r2
îii. (11)

The displacement current density is equal to the time rate of change of the displacement, JJJD =

dDDD/dt. Integrating the inner product of the displacement current density with an area gives the

displacement current through that area. Then Ampere’s law can be used to calculate the magnetic

field around the area in situations sufficiently symmetrical.

FIG. 1. Displacement Current and Magnetic Field at Magnet Model

In this case you have circular magnetic field lines centered on the x axis and oriented in a

counterclockwise direction with respect to the positive x direction. The strength of the field of a

magnetic loop will depend on the displacement current within it. The magnetic field loops acting

on the charge current will have cross-sectional areas defined by circles with diameters equal to

the distance between the edges of the disks parallel to y (Figure 1). The area of a given loop

is πa2sin2φ , where a is the radius of the disk and φ is the usual azimuth angle of a spherical

coordinate system. The displacement current as a function of φ involved in the interaction is

therefore

ID =
dDDD

dt
· îiiπa2sin2φ =

qva2

2r3
sin2φ , (12)
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where vvv = (−dr/dt)îii when you take the time derivative of DDD. From the integral form of Ampere’s

law, you find the magnetic field at the rims of the disks as a function of φ ,

BBBD =
µoID

4πasinφ
k̂kk =

µoqav

4πr3
sinφ k̂kk. (13)

Now you integrate the Lorentz force around the current loop to get the total force due to the

magnetic field of the displacement current.

FFFD = I

∮

dlll ×BBBD = I

∮

adφφ̂φφ ×BBBD =
µoqIAv

4πr3
ĵjj, (14)

where φ̂φφ = −sinφ îii+ cosφ ĵjj. To get the impulse on the dipole, you integrate over time. (The

integral becomes one taken over the distance r, since v =−dr/dt.)

PPPd p =
µoqIA

8πr2
ĵjj = µµµ ×EEE/2c2. (15)

Note that this is equal to the impulse applied to the charge, Eq. (8), both in magnitude and di-

rection, and when the impulses are added together you get a result that is equal and opposite the

linear field momentum of Furry, Eq. (3). So, you have started out with components with zero

momentum and end up with a charge-magnet-external agent system with zero linear momentum.

The next task is to calculate the mechanical angular momentum the charge-dipole system ac-

quires as the point charge is brought in from a great distance. The external agent applying me-

chanical forces will again be the final recipient of the mechanical angular momentum.

As the point charge q is moved toward the magnetic dipole, it experiences the Lorentz force

given by Eq. (7), and the dipole will experience an equal force. As in the calculation of Furry,

the angular momentum will be taken about the location of the magnetic dipole. The force of the

external agent, of course, produces no angular momentum about the location of the dipole. The

mechanical angular momentum acquired by the external agent is given by

LLLmech =
∫

rrr×FFFLdt =−
µoqµ k̂kk

4π

∫ −r

−∞

dx

x2
(16)

=−
µoqµµµ

4πr
.

This mechanical angular momentum is equal and opposite to the field angular momentum found

by Furry Eq. (5). No hidden momentum in the magnet, either linear or angular, is necessary for

momentum conservation. In fact, the presence of hidden momentum would violate momentum

conservation. Although there could be Coulomb forces on the charge and magnet due to induced

charges on the magnet, these would not contribute to the momentum of the system.

6



B. A Shielded Magnet

For this calculation I will use some previous results where a magnet is formed in a uniform

electric field5. To avoid the problems raised by an unbounded uniform electric field in this refer-

ence, I formed the magnet inside a non-conducting spherical shell with a surface charge density

that produced a uniform field inside the shell and a dipolar field externally. It was shown that

linear momentum was conserved without the need for hidden momentum, since the mechanical

momentum of the shell was equal and opposite to the field momentum. There was no angular

momentum in this model.

In the present calculation, the shell will be conducting and a current will be introduced in the

shell by an external agent. Because of the absence of an electric field inside the shell there is no

question of hidden momentum. Lenz’ law guarantees that the net mechanical angular momentum

of the charge carriers and the external agent will be zero. Rather than bringing in a positive charge

from a great distance, here there will be a positive charge q a distance r in the negative x direction

from the center of the magnet and held stationary by mechanical forces produced by an external

agent as the magnet is formed slowly by steadily increasing the current in the counterclockwise

direction about the z axis. The growing magnetic moment will point in the z direction.

The conducting shell has a radius R and the two-dimensional charge density of the charge

carriers, σ , is uniform across the shell. The two-dimensional current density will have a magnitude

K = σωRsinθ , (17)

where ω is the angular speed of the charge density, and θ is the polar angle. The magnetic moment

will be in the positive z direction:

µµµ =
4

3
πσωR4k̂kk, (18)

meaning the current density is given by3

KKK =
3

4πR4
µµµ ×RRR. (19)

The induced charge density on the conducting shell produces an electric field inside the shell that

cancels that due to the point charge. This field can be assumed to be uniform in the small-dipole

approximation. The growing magnetic field creates an emf that acts on the induced charge such

that a linear momentum of

PPPshell =−
µµµ ×EEE

c2
, (20)
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is imparted to the shell5. (The sign difference between this and the referenced material is due the

difference in the direction of EEE.)

There will also be an emf acting on the point charge q. The magnetic flux inside the radius r

will be

Φ<r =
µoµ̇t

2r
, (21)

where µ̇ = dµ/dt. The growth of the flux inside the radius r will establish an emf E = dΦ<r/dt =

µoµ̇/2r at the radius r in the clockwise direction about the z axis. The force on q will then be

FFFq = q
E

2πr
ĵjj =

µoqµ̇

4πr2
ĵjj. (22)

Without an external agent holding q stationary with mechanical forces, the charge would acceler-

ate. (Or, you could have the mass of q to be extremely large.) In the former case the external agent

would receive an impulse of

PPPq =
∫

FFFqdt =
µoqµ

4πr2
ĵjj =

µµµ ×EEE

c2
, (23)

where µµµ is the final value of the magnetic moment and EEE is the electric field at the location of the

magnet in the small-dipole approximation. Note that this is the negative of Eq. 20, such that there

is no net linear mechanical momentum in the system.

What about linear field momentum? Furry’s result3 for the linear field momentum without the

magnet model he used to avoid a mathematical singularity was, in SI units,

PPPF =−
µµµ ×EEE

3c2
, (24)

his equation (30), where µµµ and EEE are defined as before. This is the appropriate equation here for

the linear momentum due to the electric field of q and the the magnetic field of µµµ , since the electric

field of q does not penetrate the shielded magnet. The linear field momentum due to the dipolar

field of µµµ and that of the charge of the shell was calculated previously5, and for this situation is

given by

PPPdd =
µµµ ×EEE

3c2
. (25)

So the net linear field momentum is also zero and liner momentum has been conserved in the

assembly of a charge in the vicinity of a shielded magnet.

The analysis for angular field momentum is just as was given by Furry3, since the magnet is

assumed to be so small that the angular field momentum in its immediate vicinity is negligible. For

the same reason the result for the mechanical momentum given for the unshielded magnet given

above also holds. Hence angular momentum is also conserved.
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III. THE MANSURIPUR PARADOX AND CHARGE SEPARATION ON MOVING

MAGNETIC DIPOLES

A news article that appeared in the 27 April 2012 issue of the journal Science9 reviewed a claim

that provoked a lot of discussion among many researchers involved in electromagnetic theory and

special relativity. It was claimed by Mansuripur10 that the Lorentz force of electromagnetism was

not compatible with special relativity. His argument was based on a paradox involving angular

momentum in a charge-magnet system.

The paradox is depicted in Figure 2. In the inertial reference frame S’, observer O’ is stationary

with respect to a positive charge q at the origin and a magnetic dipole µµµ ′ = µ ′k̂kk at x′ = a. She sees

no reason for there to be any interaction between the charge and the dipole. However, frame S’ is

moving to the right in the inertial frame of observer O, and, according to the conventional idea, he

should see an electric dipole on the magnetic dipole, indicated by the charge symbols in Figure 2.

In his frame of reference, he should see the positive side of the magnetic dipole repelled by charge

q and the negative side attracted resulting in a torque acting on the magnetic dipole – a torque

which is not observed by O’. This situation is clearly outlawed by the principle of relativity (not

to mention common sense), so Mansuripur claimed the Lorentz force responsible for the torque is

not in tune with relativistic principles and should be replaced by another force, the one proposed

by Einstein and Laub11.

FIG. 2. The Mansuripur Paradox

A resolution to the paradox preserving the Lorentz force based on hidden momentum has been

proposed. (See, for example, Griffiths and Hnizdo12.) However, the simplest resolution involves

the proposal that an electric dipole is not present on a moving magnetic dipole13,14). With no

electric charge separation on the magnetic dipole, there is no mechanical torque in either the S or
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S’ frames.

It is interesting that the belief there is an electric dipole on a moving magnetic dipole arises

from a misapplication of relativity. When current density is Lorentz-transformed from an inertial

reference frame in which there is no charge density to a frame moving with respect to that frame,

the general result appears to be a charge density in the moving frame. The charge density four-

vector in the S’ frame is

jµ ′
= ( j1′ , j2′, j3′ ,cρ ′), (26)

where ji′ is the current density in the x′,y′, and z′ directions and ρ ′ is the charge density (in the

time component of the four-vector). A Lorentz transformation to the S frame in which the S’ frame

is moving in the x direction with speed v is15

jµ = γ( j1′ − vρ ′, j2′, j3′,cρ ′− v j1′/c). (27)

According to the above equation, there is a charge density in the S frame given by −γv j1′/c2 even

when ρ ′ is zero. This implies that the observer O sees the near side of the current loop in Figure 2

to be positive and the far side to be negative, implying he should see the result of a torque acting

on the loop due to interaction with charge q.

Franklin13 has provided a direct explanation as to why this is not true. He shows that Eq. (27)

is not correct as naìvely interpreted because the current density is a function of the space and time

coordinates which have to be transformed along with the current density itself. By not performing

this transformation, the relativity of simultaneity is violated.

To see this is the case, consider Figure 3, which depicts a rectangular current loop in its rest

frame, S’. The left-right length of the loop is l′ and it carries a counterclockwise positive current

I′. In the center of the bottom segment of the loop is a pulse generator that emits brief light pulses

to the left and right simultaneously.

In the S’ frame the pulses arrive at the same time at the detectors, but that is not the case in

the lab (S) frame in which the loop is moving to the right with speed v. In the S frame, due to the

fact the speed of light is the same in all frames, the left-moving pulse arrives at the detector at the

trailing end of the loop at a time γvl′/c2 before the right-moving pulse arrives at the detector at the

leading end of the loop. This is nothing more than the proverbial “train paradox” of relativity.

It can be shown that in the S frame an amount of charge (vl′/c2)I′ passes the left side of the

loop after the pulse arrives there and before the pulse arrives at the right side of the loop14. A

similar situation with an opposite amount of charge occurs on the top segment of the loop, making

10



FIG. 3. A Moving Current Loop

the loop appear to have a charge separation. The amount of charge on the top and bottom loop

segments determined between the times of the pulse arrivals is different in the S frame from that

in the S’ frame. The apparent charge separation in the S frame is just the amount necessary for an

electric dipole to appear on the loop14. However, it is clear this charge is only due to the relativity

of simultaneity – due to the fact that the pulse arrivals are not simultaneous in the S frame as they

are in the S’ frame.

One must also apply the argument of Franklin13 to the magnetization-polarization tensor. The

Lorentz-transformation of the tensor is not properly done without a concomitant transformation of

the coordinates of the tensor components. When this is done no electric dipole appears on moving

magnetic material, although there is, of course, an electric field generated according to Faraday’s

law. This error is unfortunately found in the classic text of Panofsky and Phillips15.

IV. TORQUE IN A MOVING CHARGE-MAGNETIC DIPOLE SYSTEM

One area of possible confusion over the existence or non-existence of torque in a moving

charge-magnetic dipole system, such as that which arises in the Mansuripur paradox, could be

the fact that there is indeed torque in the system. The system contains linear and angular mo-

mentum in its electromagnetic field and both appear in the angular momentum four-tensor. When

the system is moving, the linear momentum gives rise to a time-dependent angular momentum

creating torque in the electromagnetic field.
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Also, there is indeed torque due to the interaction between the charge and the magnetic dipole

when the system is moving so long as the magnet is not shielded from the electric field, but this

torque is also in the electromagnetic field and is not mechanical torque. These two torques are

equal and opposite, canceling out with the result the angular momentum of the charge-magnet

system is conserved with no mechanical or net electromagnetic torque present. These torques can

be identified in a fully relativistic analysis.

In the following equation for the angular momentum four-tensor, LLL is the angular momentum

of the system, ppp its linear momentum, m is the system mass, (x,y,z) is the position of the center

of mass with respect to the point about which the angular momentum is taken, and t is the time in

the rest frame of the system.

Lµν =















0 Lz −Ly mcx− ct px

−Lz 0 Lx mcy− ct py

Ly −Lx 0 mcz− ct pz

−mcx+ ct px −mcy+ ct py −mcz+ ct pz 0















.

Consider the charge-magnet system of the Mansuripur paradox. The angular momentum four-

tensor for the electromagnetic field in the S’frame is,

Lµ ′ν ′
=

















0
µoqµ

4πa
0 0

−
µoqµ

4πa
0 0

µoqµct

4πa2

0 0 0 0

0 −
µoqµct

4πa2
0 0

















, (28)

where Eqs. (3) and (4) have been used. Transforming this tensor to the lab frame S in which frame

S’ is moving with speed v in the positive x direction, you get, in the slow-motion approximation,

Lµν =

















0
µoqµ

4πa
−

µoqµvt

4πa2
0 0

−
µoqµ

4πa
+

µoqµvt

4πa2
0 0

µoqµct

4πa2
+

µoqvµ

4πca

0 0 0 0

0 −
µoqµct

4πa2
−

µoqvµ

4πca
0 0

















, (29)

The z component of the angular momentum in the lab frame, Lz = L12 is

Lz =
µoqµ

4πa
−

µoqµvt

4πa2
. (30)
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This angular momentum must be in the electromagnetic field since the first term on the right

certainly is and the second is found from a Lorentz transformation of a linear momentum in the

electromagnetic field. The time derivative of this gives the time rate of change of the angular

momentum, which is the torque involved.

dLz

dt
=−

µovqµ

4πa2
. (31)

As for the interaction between the unshielded current loop and the point charge q, look at the

force four-vector on the current loop in the S′ frame. Use the slow-motion approximation such

that the current loop is centered on x = x′ = a at t = t ′ = 0 in both frames and where quantities

unchanged between S and S’ in this approximation are not primed. If the radius of the current

loop is R, the electric field at a point on the loop x = a+Rcosφ and y = Rsinφ due to the charge q,

where φ is the local azimuth angle measured in the positive direction from the x axis, is given by

EEE ′ =
1

4πεo

q(aaa+RRR)

(a2 +R2 +2aRcosφ)3/2
, (32)

where aaa = aîii and RRR = R(cosφ îii+ sinφ ĵjj). The loop carries a current density given by

Jµ ′
= ρu′(−sinφ ,cosφ ,0,0), (33)

where,

Jx′ =−ρu′sinφ and Jy′ = ρu′cosφ , (34)

and where ρ is the charge density of the current and u′ is the drift speed. Breaking up the electric

field into x and y components (no z component is present at the loop) and applying the Lorentz

electromagnetic field tensor, you get

Eµ ′ν ′
Jν ′ =





































0 0 0
Ex′

c

0 0 0
Ey′

c

0 0 0 0

−
Ex′

c
−

Ey′

c
0 0





































































−Jx′

−Jy′

0

0

































, (35)
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so

Eµ ′ν ′
Jν ′ =



































0

0

0

Jx′Ex′

c
+

Jy′Ey′

c



































. (36)

The force-density in the time slot is seen to be

fct ′ =
Jx′Ex′

c
+

Jy′Ey′

c
, (37)

the same as the power density divided by c. This component is present because there is force on

the current density due to the charge q, and the current density is moving in the lab frame.

Assuming the distance a is much greater than the loop radius R, the electric field components

on the loop in S’ are approximately (Eq. (32))

Ex′ ≈
q(a+Rcosφ)

4πεoa3
and Ey′ ≈

qRsinφ

4πεoa3
. (38)

When you substitute Ex′ and Ey′ from the above equations and Jx′ and Jy′ from Eq. (34) into Eq.

(37) and integrate over the volume, you find that the total four-force on the loop in S’ is zero due

to the angular dependence on φ . A four-vector that is zero in one frame of reference has to be zero

in all other inertial reference frames, including, of course, the lab frame.

Nevertheless this force is responsible for the appearance of a torque in the lab frame, but this

torque results from a force density in the time component of the four-vector rather than a space

component, which implies it is not a mechanical torque but one confined to the electromagnetic

field. The components of the antisymmetric torque four-tensor, given by the volume integral

ταβ =
∫

V
(xα f β − xβ f α)dV, (39)

in S′ acting on the current loop are not all zero. The volume integrals of the torque density that

are zero are due to the φ dependence and the fact that z = 0. The non-zero pair (symmetric-

antisymmetric partners) are τ2′4′ and τ4′2′ = −τ2′4′ . The calculation of τ2′4′ is carried out as

follows, taking the origin about the center of the loop for the volume integration of the torque
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density,

τ2′4′ =
∫

V ′
(y′ fct ′ − ct ′ f ′y)dV ′ =

∫

V ′
y′ fct ′dV ′ (40)

=
∫

V ′
(Rsinφ)

(

Jx′Ex′

c
+

Jy′Ey′

c

)

dV ′.

To perform the volume integration, you assume that the wire of the loop is one-dimensional, which

lets you make the substitution ρdV ′ = λRdφ where λ is the linear charge density of the charge

carriers responsible for the current. This allows you to write the integral as

τ2′4′ =
R2λu′

c

∫ 2π

0
(−Ex′sin2φ +Ey′sinφcosφ)dφ . (41)

The second integrand gives zero when integrated over φ . The first integrand gives

τ2′4′ =
R2λu′

c

∫ 2π

0

(

−
q(a+Rcosφ)

4πεoa3

)

sin2φdφ (42)

=−
qµ/c

4πεoa2
,

where µ = I′πR2 = λu′πR2. This torque, when transformed to the S frame, gives rise to a torque

about the z axis, as follows (where I = I′ since u = u′ in the slow-motion approximation as it is the

speed difference between charge carriers and background ions),

τz = τ12 =
v

c
τ4′2′ =

v

c
(−τ2′4′) =

µovqµ

4πa2
. (43)

This is the torque that is supposed to be mechanical in nature and produced by the interaction

between the charge q and the presumed electric dipole on the magnetic dipole, both in the moving

S’ frame. However, this torque is actually in the electromagnetic field, not mechanical, and offsets

the torque given in Eq. (31).

In the case of a shielded current loop, there can be no interaction between the current in the loop

and the electric field of the charge. However, note that the entire system in this model includes the

external agent with a mechanical linear and angular momentum equal and opposite to that of the

electromagnetic field. Thus the total momentum is zero in both the S and S’ frames. (A four-vector

or four-tensor that is zero in one inertial frame is zero in all others.)

It is interesting to note that when the magnet dipole consists of a pair of magnetic poles, there

is no linear field momentum but the field angular momentum is still present according to Furry3.

With no linear momentum there is no time-dependent field angular momentum in the transformed

angular momentum four-tensor and thus no field torque. Also, since there is no current density in

the magnetic dipole, there is no interaction between the charge and the magnetic dipole when they

are in motion and thus no field torque here either.
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V. A CURRENT LOOP MOVING IN A UNIFORM ELECTRIC FIELD

In this paradox you have a uniform electric field (EEE = Ek̂kk) directed parallel to the positive z

axis and a current loop initially moving in the positive x direction in the lab frame (S) at speed v

with its magnetic dipole µµµ = µ îii pointed in the direction of motion. This paradox has been treated

by Bedford and Krumm16, by Namias17), by Vaidman7, and by Franklin13. In the rest frame of

the loop the electric field is moving in the negative x direction with speed v. Hence there is a

Lorentz-transformed magnetic field present at the loop (Figure 4).

FIG. 4. The “Paradox” Treated by Vaidman

BBB′ =−γvvv×EEE/c2 = γ
v

c2
E ĵjj (44)

There is also a transformed electric field given by

EEE ′ = γEEE = γEk̂kk, (45)

The presence of the magnetic field in the S’ frame implies there is a torque on the current loop in

that frame (so long as the electric field is not screened) given by

τττ ′ = µµµ ′×BBB′ = µ
v

c2
Ek̂kk, (46)

where the term on the far right uses the slow-motion approximation; that is, γ = 1 (v << c),

meaning µµµ ′ = µµµ and EEE ′ = EEE. This approximation will be employed for the rest of this section.
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The problem is there is no magnetic field in the lab frame and therefore (presumably) no torque.

The (net) Lorentz force on the loop is zero. Why is it that an observer in S’ records a torque that is

not observed in the lab frame? Vaidman found a resolution for three versions of a magnetic dipole;

however, he also claims that two of the dipole models contain hidden momentum. It is possible

to resolve the paradox in a general way and show that hidden momentum, if it exists, spoils the

resolution.

The hidden linear momentum in the two current loop models in the S’ frame is given by Vaid-

man as7

PPPhidden =−
1

c

∫

φJJJdV = µµµ ×EEE/c2 =−µE/c2 ĵjj, (47)

when the magnetic dipole is parallel to the positive x direction. JJJ is the current density in the loop

and φ = −zE is the electric potential. (According to the above equation, the hidden momentum

will change direction if µµµ rotates.) If there is a time-dependent angular momentum Lz′ along the z

axis about the center of the loop at time t (= t ′ for the slow-motion approximation) and also hidden

linear momentum in the loop given at that instant by Eq. (47), the angular momentum four-tensor

(Eq. (28)) taken about the center of the loop in S’ is

Lµν =















0 Lz′ 0 0

−Lz′ 0 0 µEt/c

0 0 0 0

0 −µEt/c 0 0















. (48)

(There is also linear momentum in the electromagnetic field which would be included in the com-

plete tensor, but since the interaction between matter and the field is negotiated by the Lorentz

force, there is no reason to include it when just considering the current loop.)

The torque on the loop is the time rate of change of its angular momentum in the rest frame

(S’) of the loop (dLz/dt). When the angular momentum four-tensor is Lorentz-transformed to the

S frame, the four-tensor will contain

Lz = Lz′ − (v/c2)µEt (49)

in the x-y slot. The time derivative of this equation gives

dLz/dt = dLz′/dt − (v/c2)µE, (50)

such that the torque in the S frame does not equal that in the S’ frame. So, we are back to the

paradox of observers in different frames measuring different torques.
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The fact is no hidden momentum exists in the current loop in S’ as I have shown above. The

torque acting on a current loop is that found in Eq. (46), unless the ambient electric field is shielded

from the current by conducting material. Then BBB′ = 0 at the current and there will be no torque,

something previously pointed out by Franklin6. If there is induced charge on the loop due to a

lack of total shielding from the ambient electric field, the Lorentz force on the two charged sides

of the loop will be parallel to the z direction and equal and opposite, canceling out and producing

no torque but creating stress in the magnet.

Namias17 and Vaidman7 claim the there is a magnetic field inside the conducting loop due to

the scalar potential that the charges induced by the ambient electric field to counter the ambient

potential. This induced potential is supposed to give rise to a magnetic field in the S frame courtesy

of the vector potential of the transformed induced potential. However, it appears to me the total

scalar potential inside the conductor in both frames should be constant, and therefore there should

be no transformed magnetic field in S. (See also Franklin6.)

For a magnetic dipole like that of Shockley and James4, there is no conducting material and the

full torque of Eq. (46) should be realized. (Any induced charge will be stationary in S’ frame.)

Since there is no magnetic field in the lab frame in which the loop is moving, how is it that no

torque is observed? Actually, the torque is observed as I will now explain.

It is correct that in the S frame the (net) Lorentz force on the magnetic dipole is zero, but that

does not mean the torque is zero. In the S’ frame there is a force acting on the positive y′ side

of the loop in the negative x′ direction. On the negative y′ side of the loop a force of the same

magnitude is acting on the loop in the positive x′ direction. These forces sum to zero and so the

net force on the loop in both the S and S’ frames is zero. When these two forces are transformed

to the S frame, each is reduced by a factor of 1/γ , but they are still there. The mass and thus the

rotational inertia of the loop is increased by a factor of γ . The torque is reduced and the inertia is

increased by the same factor such that the rotational motion is the same in both frames.

This argument brings up another point. It should be clear that you cannot create an interaction

in a system where there is none by merely performing a Lorentz transformation. Neither can

you Lorentz-transform away an interaction in a system. The interaction involving a Lorentz-

transformed magnetic field and a magnet in its rest frame cannot be transformed away by observing

the system in a frame moving with respect to the rest frame of the magnet, even if a Lorentz-

transformed magnetic field does not exist in that frame.

My first objection to the Mansuripur paradox was in fact applying the point mentioned above.
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A charge separation on a current-carrying wire or current loop is an interaction between opposite

charges that cannot be produced by merely applying a Lorentz transformation from the rest frame

of the system to a moving frame of reference.

VI. AHARONOV-CASHER EFFECT

The Aharonov-Bohm effect18,19 was a surprising manifestation of the influence of the vector

potential of electrodynamics on the quantum behavior of particles not subject to either a mag-

netic or electric field. It was predicted that two identical charged particles, passing either side

of a solenoid would exhibit a phase difference in their wave functions, leading to a detectable

interference pattern when the particles interacted after passing the solenoid. This was called a

“topological quantum effect”.

This was puzzling since there is no electric or magnetic field acting on the particles, and the

vector potential field through which the particles traveled was thought by many to be only a math-

ematical convenience for working out electromagnetic problems. The electric and magnetic fields

can be computed from the scalar and vector potentials of electromagnetism, but neither is unique.

They can be transformed by gauge transformations and yet yield the same electric and magnetic

fields. So it was a surprise that a field that was not considered exactly real could have real effects.

(This was seen as a case of gauge invariance.)

Working with an analogy to the Aharonov-Bohm effect, Aharanov and Casher proposed the

same effect would be seen for neutral magnetic particles traveling on either side of, for example,

a line of charge20. The proposed Aharonov-Casher (AC) effect included the proposition that neu-

trons would not experience a force while moving in an electric field. Neutrons passing either side

of the line of charge with their magnetic moments parallel to the line and to each other would

experience unequal phase shifts in their wave functions resulting in a phase difference of

∆φ = µoλ µ/h̄, (51)

where λ is the linear charge density, µ is the magnetic moment of the neutron, and h̄ is the reduced

Planck’s constant. This could appear as a diffraction pattern in an experiment.

Boyer21 disputed the notion that a neutron in an electric field would not experience a force.

Instead, he argued that a moving neutron, modeled as an Amperian magnet, would sport an electric
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dipole ppp which would experience a force in an electric field EEE given by

FFF = (ppp ·∇)EEE. (52)

With an electric field produced by a line of charge,

EEE =
λ

2πεor2
rrr, (53)

where rrr = xîii+ y ĵjj is measured from the line of charge, Boyer computed a force on the neutron

given in SI units by

FFF =
µoµλvo

2πr4

[

(y2 − x2)îii−2xy ĵjj
]

. (54)

The force is that on a neutron with its magnetic moment parallel to the line of charge (in the

positive z direction) moving in the positive y direction with speed vo. The electric dipole in this

case is given by ppp = µvo/c2 îii.

Boyer considers two such neutrons traveling in the positive y direction with speed vo, one at

x = +a and one at x = −a. He assumes the paths will not vary much from straight lines, an

assumption that seems justified considering that µoµ/2πm = 1.15× 10−6 J·m/A·kg, where m is

the neutron mass. He finds that a neutron passing on the positive x side of the positively charged

wire is delayed with respect to one passing on the negative side by an amount ∆y = µoµλ/mvo,

which results in the same phase shift as found by Aharonov and Casher in Eq. (51). Hence Boyer

claims the phase shift of the AC effect is due to classical lag rather than a quantum topological

effect. Aharonov et al22 responded that Boyer overlooked the effect of hidden momentum in the

charge-magnet system, which acts to render the net force on the neutron zero.

When Aharonov et al. equate the net force acting on the neutron (their equation (6)) to that act-

ing between the line of charge and the induced electric dipole plus that due to the supposed rate of

change of the hidden momentum, they find that the net force on the neutron is zero. However, with

neither hidden momentum5,6,23,24 in a charge-magnet system nor an electric dipole on a moving

magnetic moment13,14, the AC effect needs a different explanation.

As shown above, when a point charge is brought into the vicinity of a small Amperian magnet,

the magnet gains an amount of mechanical linear momentum µµµ ×EEE/2c2 with an equal momentum

gained by the charge, and the opposite of the sum of these is deposited in the electromagnetic

field. The force is due to the magnetic field produced by the displacement current as the charge

approaches.
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When you perform the same steps to get the impulse on the magnet due to the line of charge

moving toward the magnet (or vice versa) as was done for the point charge, the momentum trans-

ferred to the magnet is found to be

PPPm = µµµ ×EEE/c2, (55)

where EEE is the electric field due to the line of charge. As the magnet moves through the field,

the mechanical momentum will in general change with time, giving rise to a force on the magnet.

With the electric field given by Eq. (53), the force is given by dPPPm/dt with x and y components,

respectively,

Fx =
µoµλ

2πr2

[

2

r2
(rrr · vvv)y− ẏ

]

= mẍ, (56)

and

Fy =
µoµλ

2πr2

[

−
2

r2
(rrr · vvv)x+ ẋ

]

= mÿ, (57)

the same as found by Boyer. Here vvv is the velocity of the magnet and m is the magnet’s mass.

When you make the same assumptions as Boyer (initial velocity = ẏ ĵjj = vo ĵjj and x = ±a), these

equations become

Fx =
µoµλ

2πr4
(y2 −a2) = mẍ, (58)

and

Fy =
µoµλ

2πr4
(±ay) = mÿ. (59)

From this point on, if you continue the argument of Boyer, you arrive at his result, that the AC

phase shift, Eq. (51), is due to a classical lag.

There are at least two solutions to Eqs. (56) and (57), and one is important for the Aharonov-

Casher effect. The trivial solution just has the magnet stationary in the electric field. This would

be done my applying mechanical forces to place the magnet at rest in the field.

A more interesting solution can be found by putting Eqs. (56) and (57) in polar coordinates.

The equations are then

FFF =−
µoµλ

2πr2
(rφ̇ r̂rr+ ṙφ̂φφ) = m[(r̈− rφ̇ 2)r̂rr+(2ṙφ̇ + rφ̈)φ̂φφ ]. (60)

Look for a solution where r is constant. The equation reduces to

µoµλ

2πr
r̂rr = mrφ̇ r̂rr. (61)
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The magnet can therefore execute a circle in the counterclockwise direction (assuming λ is posi-

tive) with an angular speed of

ω =
µoµλ

2πmr2
. (62)

Note that no such orbit exists in the clockwise direction for positive λ .

It is interesting that the circumference of the orbit is exactly the same as the classical lag found

by Boyer: µoµλ/mv where v = rω . Since this highly improbable orbit is due to electromagnetic-

derived forces and not to quantum effects, its theoretical existence supports classical lag as the

cause of the Aharonov-Casher effect as claimed by Boyer.

VII. CONCLUDING DISCUSSION

The understanding of momentum in charge-magnet systems has been hampered by not taking

the formation of these systems into account. When an Amperian magnet is subjected to an electric

field or is formed in a preexisting electric field (or some combination thereof), Lorentz forces

arise that will (in general) impart momentum to the magnet and the charges and/or to an external

agent exerting mechanical forces on them. An equal and opposite amount of momentum is added

to the electromagnetic field. The solution to the Shockley-James paradox4 is that their charge-

magnet system is either not being viewed in its original rest frame or the mechanical momentum

that the system would gain is present in an external agent. No hidden momentum resides in the

charge-magnet system5.

It has generally been thought that an Amperian magnet moving in an observer’s frame of ref-

erence will be observed to have an electric dipole present on it perpendicular to both the magnetic

moment and the direction of motion. However, there is no such dipole; its mathematical manifes-

tation is due to ignoring the effects of the relativity of simultaneity13,14.

The solution to the paradox of Mansuripur10 is simply that there is no electric dipole on a

moving magnetic dipole. Hence the supposed torque that would be seen on a moving charge-

magnet system due to the interaction of the charge with the electric dipole is not present. No

mechanical torque is seen whether or not the system is in motion25.

As Furry3 has shown, a charge-magnet system where the magnet is Amperian can contain both

linear and angular momentum in its electromagnetic field. This momentum is obtained when

the system is formed and balances the mechanical momentum that is also generated5. When the

system is in motion there is a torque, but it is in the electromagnetic field and has been mistaken
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as a mechanical torque acting on the magnet.

There are two equal and opposite sources of torque in a moving charge-magnet system, yield-

ing no net torque. One is due to the motion of the electromagnetic field. The field momentum

Furry identified is Lorentz-transformed into a time-dependent angular momentum, thus producing

a torque. The other source is due to the interaction between the charge and the current loop of the

magnet, not between the charge and an electric dipole on the magnet25.

A current loop can experience a torque in a magnetic field unless the field and magnetic moment

are parallel or antiparallel. A current loop moving through an electric field will be in a Lorentz-

transformed magnetic field and thus may experience a torque. An observer at rest with the electric

field sees no magnetic field, and it has been thought that the observer would detect no torque,

thus creating a paradox. Vaidman7 claimed to have solved this paradox by appealing to induced

mechanical forces.

However, if there actually is torque acting on the current loop in its frame of reference, a

Lorentz transformation to any other frame of reference cannot do away with that torque. So, if

there is a torque observed in the moving frame due to a magnetic field in that frame, there will also

be a torque seen in any other reference frame, whether or not a magnetic field is detected in that

frame.

In the Aharonov-Casher effect20 neutral Amperian magnets (such as exist on neutrons) are

supposed to experience a differential phase shift in their wave functions as they pass on either side

of a line of charge. According to this effect, the phase shift difference is a result of what is called

a quantum topological effect rather than some force that causes one magnet to beat another to a

detection system. Boyer21 disputed the quantum nature of the effect by calculating a lag between

neutrons passing either side of the line of charge due to a force between the charge of the line

and an electric dipole on the moving magnet. However there is no electric dipole present and this

explanation does not work.

Aharonov et al.22 accepted the existence of the force Boyer identified but argued that hidden

momentum was involved in canceling it. There is no hidden momentum and no electric dipole,

but there is still a force on the moving magnet due to the change in its mechanical momentum

to offset the opposite change in the electromagnetic momentum. As such, there is a lag between

magnets moving on opposite sides of the line of charge, and this lag turns out to be the same as

that calculated by Boyer.
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