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I. INTRODUCTION

It has been known for a long time that electromagnetic fields can contain both linear and angular momentum [1, 2].
The linear electromagnetic momentum per unit volume in free space is given in SI units by

℘em = ǫoE ×B, (1)

where ǫo is the permittivity of free space, E is the electric field, and B is the magnetic field (also commonly called the
magnetic induction). The quantity of linear electromagnetic field momentum in a region of space requires a volume
integral of Eq. (1) over that region. The electromagnetic angular momentum density about a certain point involves
taking the vector product between a position vector centered on that point and the linear momentum density at a
point in space, that is,

lem = ǫor × (E ×B). (2)

Once again you must integrate over a volume of space to find the electromagnetic angular momentum in that space.
In general the electromagnetic fields will be changing in time and there will be electric and magnetic matter in the

integrated volumes. This situation can be handled by utilizing Maxwell’s stress tensor, given in SI units by [3].

Tij = ǫo

[

1

2
δijE

2 − EiEj

]

+
1

µo

[

1

2
δijB

2 −BiBj

]

, (3)

where µo is the permeability of free space. (Note: Other authors may define the tensor as the negative of this.) In
terms of this tensor, the conservation of linear momentum for a system where there is no mechanical momentum
crossing the system boundary can be written as [3],

Σini

(

Σj
∂Tij

∂xj

)

+ f +
1

c2
∂S

∂t
= 0. (4)

This equation states that the amount of electromagnetic field momentum leaving a unit volume (first term, with
ni as unit vectors) plus the change in the mechanical momentum in that volume (term two) plus the change in
electromagnetic field momentum in that volume is zero. Since no particles are allowed into or out of the volume,
the increase in the mechanical momentum (term two) is a decrease in the field momentum, which makes f the
electromagnetic force density on the particles in the volume. So, if total momentum is to be conserved, an increase in
the field momentum in the volume must be exported outside the volume to keep total momentum constant (term one
is negative). Alternatively, a decrease in field momentum in the volume must be compensated by field momentum
entering from the outside (term one is positive).
The volume integral of the first term of Eq. (4) is the flow of field momentum out of the chosen volume per unit

time; the volume integral of f is the transfer of field momentum to mechanical momentum per unit time in the
volume; and the integral of the right-most term is the change in field momentum in the volume per unit time. The
quantity S = E×B/µo is called the Poynting vector and is the flow of electromagnetic energy per unit area per unit
time. For a completely isolated system, the first term in Eq. (4) would be zero; however, due to the long range of the
electromagnetic force, this would have to be a whole universe!

The conservation of angular momentum is expressed as the vector product of the position vector about which
angular momentum is calculated with Eq. (4). This can be written in a general form as

r ×∇ · T̄ + r × f +
1

c2
r ×

∂S

∂t
= 0. (5)

Since I am only covering non-radiating systems that are isolated from the rest of the universe, there is no need to
worry here about momentum crossing volume surfaces; in other words we do not need Eqs. (4) or (5).
This article is concerned with linear and angular momentum in isolated systems. There are a number of paradoxes

associated with these systems that haven’t been resolved to everyone’s satisfaction. In what follows I will examine
momentum in electromagnetic systems containing magnetic dipoles, especially with regard to some of these paradoxes,
often in a fully relativistic way.

II. HIDDEN MOMENTUM

It is rather amazing that even though systems consisting of magnetic dipoles in electric fields seem rather simple,
paradoxes involving these systems are still being argued about. Problems involving these systems were recognized as
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long ago as 1891 by J. J. Thompson [1]. Much of the controversy is in how the special theory of relativity is applied
to such systems. Electromagnetic theory was the first relativistic theory (in the modern sense), though it was not
recognized as such until the work of Einstein [4].

Many of these paradoxes involve the concept of hidden momentum, a term coined by Shockley and James [5] when
considering the momentum in a charge-magnet system in 1967. Their model consisted of two equal and opposite
charges equally distant on either side of a magnet. The magnet consisted of a couple of oppositely rotating non-
conducting disks, one with a positive charge on its rim and the other with an equal negative charge.

According to Eq. (1) there is electromagnetic field linear momentum in this model, but it was just sitting there
in their analysis, not moving. So where was the equal and opposite mechanical momentum necessary to balance the
electromagnetic momentum? They suggested there must be an unseen relativistic form of momentum in the magnet,
the so-called hidden momentum. However, they did not consider how this system came to be in the first place, and
that, as I will explain, is where they made an error [6].

Just what is hidden momentum? Babson et al. [7] have given a couple of models attempting to explain why hidden
momentum is present in a magnet immersed in an electric field. The simpler model is likely the one where there is a
rectangular tube with curved edges and area A in which identical charged but non-interacting particles can circulate,
creating a current I and a magnetic dipole IA. (See Figure 1, left side.)

In the figure an electric field is directed upward and particles on the left side of the tube are accelerated in that
direction. The particles travel across the top of the tube and are decelerated as they move downward toward the
bottom of the tube. Hence the particles traversing the top of the tube are moving faster than those traversing the
bottom of the tube.

FIG. 1. Models of Hidden Momentum

In order to prevent an unphysical ”bunching” of particles, which would mean the current produced by the moving
particles would vary from place to place, it is assumed the number of particles passing a given point in the tube per
unit time is the same throughout the tube. For each particle in the ascending segment of the tube, there is a particle
in the descending segment with equal and opposite momentum. Therefore, there is no net momentum present in the
ascending and descending segments.

In the top segment the particles are moving faster than in the bottom, such that each particle at the top has more
momentum to the right than a particle at the bottom has to the left. However, the requirement that the current be
equal everywhere means the particles at the top are farther apart than those at the bottom.

In Newtonian mechanics momentum is mass times velocity, which means that momentum per unit length at the
top to the right is the same as momentum per unit length at the bottom to the left when the current is equal in both
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segments. However, in relativity theory momentum of a particle is

p = mγv, (6)

where m is the particle’s mass and v is the particle’s velocity. The Lorentz factor γ is given by

γ =
1

√

1− v2/c2
(7)

so that the momentum at the top is slightly larger in magnitude than at the bottom since γ at the top is slightly
larger than γ at the bottom. This is supposed to result in a greater momentum to the right in the top than to the
left in the bottom. There is net linear momentum in the magnet that is not seen according to this view. Yet, if the
electric field were turned off, the loop would move to the right (if loose) as the hidden momentum was released. In
terms of the electric field E, the area of the loop, and the current due to the flow of the non-interacting charges,
Babson et al. compute a hidden momentum given by

phid = EIA/c2 or phid = µ×E/c2, (8)

where µ = IA is the magnetic moment of the loop and the area vector of the loop, A, is defined by the right-hand
rule applied to the current I.

This non-interacting particle picture is not directly applicable to a real current loop, so a more realistic model is one
where the loop is filled with a charged, incompressible fluid to mimic a real electric current [7]. This model is depicted
in Figure 1 on the right. In this model the speed of the fluid has to be the same at every point in the tube (with
constant cross section). There is thus no difference in γ at the top and that at the bottom. However the pressure in
the fluid increases from bottom to top in the left segment of the tube and decreases from top to bottom in the right
segment due to the electric force. Pressure (and stress) can result in momentum in special relativity [8–10].

Babson et al. calculate the hidden momentum due to the pressure difference is given by

phid = γ2(Pt − Pb)vla/c
2, (9)

where Pt and Pb are the pressures at the top and bottom, respectively, v is the speed of the fluid, l is the length of the
top (and bottom) segments of the loop, and a is the cross-sectional area of the tube. Then they show this expression
also equals what appears in Eq. (8).
Both models described above suffer from the same error. Note that they are posed as existing systems with no

history. What if you assemble these systems from components that have no energy or momentum? Certainly this can
be done, and when it is done you get a different picture.
Look at the non-interacting charged particle model. If you apply an electric field to the model where the charges

are initially stationary and the tube is nailed down, all you do is push the charges up towards the top. No circular
motion will occur. What you can do is introduce the particles one by one inside the tube at the lower left corner
(location 1 in the left side of Figure 1). This particle will accelerate upward in the electric field and collide with the
upper left corner (2). The particle will bounce to the right with a certain right-directed momentum. The tube will
gain an equal and opposite momentum, except, since it is nailed down, that momentum will be transferred to its
environment.
When the particle reaches the upper right corner (3) it will deposit its momentum in the tube. Now the left-right

momenta of both the particle and the tube are zero as the particle approaches the lower right corner (4). Moving
slower due to being decelerated by the electric field, there will be less left-right momentum exchange at this corner,
but the momenta will again be equal and opposite: The left-right momentum of the system will continue to be zero.
Due to the momentum exchange at the corners of the tube, it is irrelevant whether or not you invoke Newtonian or
relativistic physics.
The same sequence of collisions occurs with each particle introduced to the tube at location 1. It turns out as you

do this there will be a slightly greater momentum at the top equal to the momentum of one particle there [6]. For a
nailed-down tube, the environment will have an equal and opposite momentum; however, this momentum will not be
the same as that given in Eq. (8) and will be entirely negligible for a large number of small particles.

I developed the picture above to clarify the momentum interaction at the corners of the particle track. The picture
is no different if the particles are already circulating by some means. There will still be momentum exchanges at the
corners such that no hidden momentum develops. The only way hidden momentum could be in the model would be
if it were prepared specifically for such a situation to hold. In other words the hidden momentum would have to be
supplied somehow by an external agent.
The argument against hidden momentum in the incompressible fluid model is similar. First you have to somehow

get the fluid circulating in this model, otherwise all that happens is a static pressure regime appearing in the fluid.
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When the fluid is caused to circulate, pressure will build up in the top of the tube greater than that in the bottom as
the fluid flows, producing a left to right momentum.
However, not only does pressure have momentum in relativity, but so does stress. The pressure buildup will produce

a buildup of stress in the tube itself, and this will contain momentum equal and opposite to that in the fluid. This
will be true at the top and bottom of the tube. Hence there is no net left/right momentum in the fluid-tube system.

III. MOMENTUM IN A CHARGE-MAGNET SYSTEM

In 1969 Furry [11] calculated the electromagnetic linear and angular field momentum in a charge-magnetic dipole
system – for both an Amperian magnet where the magnetism is produced by electric current and a magnetic-pole
model where the magnetism is produced by magnetic pole pairs, assuming magnetic monopoles exist. In his calculation
a magnetic dipole was situated at the origin of a Cartesian coordinate system with its dipole moment µ directed at
an arbitrary angle in the x-z plane. A point charge q was located at z = a. He found the linear field momentum of a
charge-Amperian magnet system to be

pem =
µoq

4πa3
µ× a = E × µ/c2, (10)

in the slow-motion approximation (γ = 1) where the second expression on the right assumes the electric field is
uniform over the extent of the magnetic dipole (small dipole approximation). If the magnet is due to a pair of isolated
poles, the linear momentum is zero. Furry found that any distribution of electric field and magnetic-pole pairs would
have zero linear field momentum.
The field angular momentum was found to be

Lem =
µoq

4π

[

µq

a
−

(µ · a)a

a3

]

=
µoqµsinθ

4πa
î, (11)

where θ is the angle between a and µ and the right-most expression is due to his choice of coordinates. When the
electric field is perpendicular to the magnetic moment, the field angular momentum is

Lem =
µoqµ

4πa
. (12)

In contrast to the case of linear momentum, the angular field momentum was the same whether the magnetic dipole
was Amperian or a magnetic-pole pair.
The presence of linear and angular electromagnetic field momentum in a system consisting of a point charge and

a magnetic dipole is hard to understand unless there is some way to balance the field momentum with mechanical
momentum. This was what Shockley and James [5] set about to do in their 1967 paper where their model consisted an
Amperian magnet made of non-conducting material and two oppositely charged point particles equidistant on either
side of the magnet and where the magnetic moment was perpendicular to the line between the two charges.
They noted, implicitly, that the two oppositely charged particles guaranteed that there would be no angular mo-

mentum about the point where the magnet was located. With this model they only attempted to propose the presence
of (hidden) linear momentum in the magnet. However, it is clear from the models of Babson et al. [7] that there is
angular momentum in those models if the linear hidden momentum exists. Babson et al. neither mention nor explain
the presence of this angular momentum, which is also present in the model of Shockley and James.
Again, the problem is ignoring the history of the models – how they were assembled in the first place. I have shown

[6] how mechanical momentum is imparted to the model of Shockley and James by bringing the two opposite charges
in from a great distance to the vicinity of the magnetic dipole. This momentum is transferred to an external agent
if that agent exerts mechanical forces to balance the Lorentz forces acting on the charges and magnet. Here, I will
bring a single charge in from a great distance to the vicinity of an Amperian magnet dipole to show that the linear
and angular mechanical momentum generated is equal and opposite to that found by Furry [11].

To keep the mathematics simple for the sake of argument, I will have the electric field perpendicular to the magnetic
moment. The magnetic dipole will be at the origin of the coordinate system with its moment pointing in the positive
z direction. The point charge will be moved slowly (to avoid any radiation from acceleration) along the x axis in the
positive direction to a point x = −r. The magnetic field at the location of the charge as it moves along the x axis is

B = −
µoIA

4π|x|3
k̂. (13)
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The Lorentz force on the charge is

FL = qvî× (−
µoIA

4π|x|3
k̂) =

µoqIAv

4π|x|3
ĵ, (14)

where I is the current in the Amperian dipole, A is the area of the current loop, v = dx/dt is the speed of the charge,

and the magnetic moment is µ = IAk̂.
The impulse imparted to the charge as it moves along the x axis from x = −∞ to x = −r can be calculated as

follows [6].

∆pq =

∫

−r

−∞

FLdt = −
µoqIA

4π
ĵ

∫

−r

−∞

dx

x3
= µ×E/2c2, (15)

where E is the electric field at the location of the dipole, which is considered to be sufficiently small so the field is
uniform across the current loop.
There has been some controversy over the correct formula for calculating the force on a magnetic dipole [12–14],

so I will calculate it from a more fundamental perspective. The result is the same as that found from the traditional
formula, given by

F = ∇(µ ·B), (16)

the formula supported by Franklin [12]. The moving charge q produces a magnetic field at the dipole. This is the
magnetic field that would be used in the above equation to calculate the force.

The force can be calculated from the magnetic field produced by the displacement current acting on the charge
current in the current loop of the magnet (Figure 2). In the slow-motion approximation where γ = 1, the displacement
due to q at the magnetic dipole is

D =
1

4π

q

r2
î, (17)

where r = |x| is the distance between the charge and the dipole. The displacement current density is equal to the time
rate of change of the displacement, JD = dD/dt. Integrating the inner product of the displacement current density
with an area gives the displacement current through that area. Then Ampere’s law is used to calculate the magnetic
field around the area.

FIG. 2. Displacement Current and Magnetic Field at Magnet Model

In this case you have circular magnetic field lines centered on the x axis and oriented in a counterclockwise direction
with respect to the positive x direction. The strength of the field of a magnetic loop will depend on the displacement
current within it. The magnetic field loops acting on the charge current will have cross-sectional areas defined by
circles with a diameter equal to the distance between the edges of the disks parallel to y (Figure 2). The cross-sectional
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area of a given loop is Asin2φ = πa2sin2φ, where a is the radius of the disk and φ is the usual azimuth angle of a
spherical coordinate system. The displacement current as a function of φ involved in the interaction is therefore

ID =
dD

dt
· îπa2sin2φ =

qva2

2r3
sin2φ, (18)

where v = (−dr/dt)̂i when you take the time derivative of D. From the integral form of Ampere’s law, you find the
magnetic field at the rims of the disks as a function of φ,

BD =
µoID

4πasinφ
k̂ =

µoqav

4πr3
sinφk̂. (19)

Now you integrate the Lorentz force around the current loop to get the total force due to the magnetic field of the
displacement current.

FD = I

∮

dl×BD = I

∮

adφφ̂×BD =
µoqIAv

4πr3
ĵ, (20)

where φ̂ = −sinφî+ cosφĵ. To get the impulse on the dipole, you integrate over time.

∆pµ =
µoqIA

8πr2
ĵ = µ×E/2c2. (21)

Note that this is equal to the impulse applied to the charge, Eq. (15), both in magnitude and direction, and when
the impulses are added together, you get a result that is equal and opposite the field electromagnetic momentum of
Furry, Eq. (10). So, you have started out with components with zero momentum and end up with a charge magnet
system with zero momentum, as the field and mechanical contributions to the momentum cancel. (The mechanical
forces used to assemble the system are equal and opposite and don’t impart momentum.)
There are a variety of ways to model an Amperian magnetic dipole [13], but note that the momentum imparted to

the magnet by the above mechanism is not dependent on the model. Even if the current is inside a conducting ring
such that the electric field of the charge does not penetrate the current, it is only the electric field external to the
magnet that is involved in producing the magnetic field acting on the current.
The next task is to calculate the mechanical angular momentum the charge-dipole system acquires as the point

charge is brought in from a great distance. In this case you must also have an external agent to assemble the system,
but the agent must acquire the mechanical angular momentum itself so that the final configuration of the charge-
dipole system is stationary as it is in Furry’s calculation. (Actually, you would need to use the external agent in the
previous calculation to ensure that the charge-magnet system ended up in Furry’s configuration unless the masses of
the charge and magnet were equal. Then the relative configuration would be correct but the rest frame would have
changed.)
As the point charge q is moved in toward the magnetic dipole, it experiences the Lorentz force given by Eq. (14).

The dipole will experience an equal force. Both forces will be countered by the external agent, such that the magnetic
dipole remains stationary and the point charge moves in a straight line along the x axis in the positive x direction. As
in the calculation of Furry, the angular momentum will be taken about the location of the magnetic dipole. The force
of the external agent, of course, produces no angular momentum about the location of the dipole. The mechanical
angular momentum is given by

Lm =

∫

τmdt =

∫

r × FLdt = −
µoqµk̂

4π

∫

−r

−∞

dx

x2
= −

µoqµ

4πr
. (22)

This mechanical angular momentum is equal and opposite to the field angular momentum found by Furry Eq. (12).
No hidden momentum, either linear or angular, is necessary for momentum conservation.

IV. THE MANSURIPUR PARADOX AND CHARGE SEPARATION ON MOVING MAGNETIC

DIPOLES

A news article that appeared in the 27 April 2012 issue of the journal Science [15] reviewed a claim that provoked
a lot of discussion among many researchers involved in electromagnetic theory and special relativity. A researcher
at the University of Arizona, Masud Mansuripur, claimed the Lorentz force of electromagnetism was not compatible
with special relativity [16]. His argument was based on a paradox involving angular momentum in a charge-magnet
system.
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The paradox is depicted in Figure 3. In the inertial reference frame S’, observer O’ is stationary with respect to a
charge q at the origin and a magnetic dipole µ at x′ = a. She sees no reason for there to be any interaction between
the charge and the dipole. However, frame S’ is moving to the right in the inertial frame of observer O, and, according
to the conventional idea, he should see an electric dipole on the magnetic dipole, indicated by the charge symbols in
Figure 3. In his frame of reference, he should see the positive side of the magnetic dipole repelled by charge q and the
negative side attracted resulting in a torque acting on the magnetic dipole – a torque which is not observed by O’.
This situation is clearly outlawed by the principle of relativity, so Mansuripur claims the Lorentz force responsible
for the torque is not in tune with relativistic principles and should be replaced by another force, the one proposed by
Einstein and Laub [17].

FIG. 3. The Mansuripur Paradox

A resolution to the paradox based on hidden momentum has been proposed. (See, for example, Griffiths and
Hnizdo [18].) However, the simplest resolution involves the proposal that an electric dipole is not present on a moving
magnetic dipole [19, 20]. With no electric charge separation, there is no torque in either the S or S’ frames.
It is interesting that the belief there is an electric dipole on a moving magnetic dipole arises from a misapplication

of relativity. When current density is Lorentz-transformed from an inertial reference frame in which there is no charge
density to a frame moving with respect to that frame, the general result appears to be a charge density in the moving
frame. The charge density four-vector in the S’ frame is

jµ
′

= (j1
′

, j2
′

, j3
′

, cρ′), (23)

where ji
′

is the current density in the x′, y′, and z′ directions and ρ′ is the charge density (in the time component of
the four-vector). A Lorentz transformation to the S frame in which the S’ frame is moving in the x direction with
speed v is [21]

jµ = γ(j1
′

− vρ′, j2
′

, j3
′

, cρ′ − vj1
′

/c). (24)

According to the above equation, there is a charge density in the S frame given by −γvj1
′

/c2 even when ρ′ is zero.
This implies that the observer O sees the near side of the current loop in Figure 3 to be positive and the far side to
be negative, implying he should see the result of a torque acting on the loop due to interaction with charge q.
This point of view is strengthened by considering the Lorentz transformation of the magnetization-polarization

four-tensor [21]. This tensor is assumed to be fully relativistic and therefore Lorentz-transformable from one frame of
reference to another. When this is done, a substance with only magnetization in its rest frame appears to generally
have an electric polarization in a frame in relative motion. This is supposed to mean a magnetic dipole in motion
should be seen to have an electric dipole with a dipole moment perpendicular to both the magnetic dipole moment
and the direction of relative motion.
Franklin [19] has produced a direct explanation as to why this is not true. He shows that Eq. (24) is not correct

as naively interpreted because the current density is a function of the space and time coordinates which have to be
transformed along with the current density itself. By not performing this transformation, the relativity of simultaneity
is violated.
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To see this is the case, consider Figure 4, which depicts a rectangular current loop in its rest frame, S’. The left-right
length of the loop is l′ and it carries a counterclockwise positive current I ′. In the center of the bottom segment of
the loop is a pulse generator that emits brief light pulses to the left and right simultaneously.

FIG. 4. A Moving Current Loop

In the S’ frame the pulses arrive at the same time at the detectors, but that is not the case in the lab (S) frame
in which the loop is moving to the right with speed v. In the S frame, due to the fact the speed of light is the same
in all frames, the left-moving pulse arrives at the detector at the trailing end of the loop at a time γvl′/c2 before the
right-moving pulse arrives at the detector at the leading end of the loop. This is nothing more than the proverbial
”train paradox” of relativity.
It can be shown [20] that an amount of charge (vl′/c2)I ′ passes the left side of the loop after the pulse arrives there

and before the pulse arrives at the right side of the loop. A similar situation with an opposite amount of charge occurs
on the top segment of the loop, making the loop appear to have a charge separation in the S frame. The amount of
charge on the top and bottom loop segments determined between the times of the pulse arrivals is different in the S
frame from that in the S’ frame. The apparent charge separation in the S frame is just the amount necessary for an
electric dipole to appear on the loop [20]. However, it is clear this charge is only due to the relativity of simultaneity
– due to the fact that the pulse arrivals are not simultaneous in the S frame as they are in the S’ frame.
I have also questioned the relativistic nature of the magnetization-polarization tensor [20]. If the magnetization

of a substance is Amperian – that is, due to current rather than magnetic charges – the argument of Franklin [19]
and that given just above would apply: The Lorentz-transformation of the tensor is not properly done without a
concomitant transformation of the coordinates of the tensor components. As such, the magnetization-polarization
tensor is relativistically covariant if (and only if) a Lorentz transformation of the coordinates accompanies the Lorentz
transformation of the tensor components. The same is, of course, true of the current density four-vector, Eq. (23).

V. THE ELECTRIC AND MAGNETIC FIELDS OF A MOVING MAGNETIC DIPOLE

It can be shown that the fields of a moving magnetic dipole are not compatible with the idea that an electric dipole
exists on the magnetic dipole. The magnetic field of a point magnetic dipole located at the origin of a coordinate
system in its rest frame (S’) is

B′ =
µo

4π

[

3(µ′ · r′)r′

r′5
−

µ′

r′3

]

−
2µoµ

′

3
δ(r′), (25)



10

where µ′ = µ′k̂, r′ = x′̂i + y′ĵ + z′k̂, and δ(r′) is the Dirac delta function, which accounts for the singularity at
the location of the dipole. Since this term has no effect on the fields away from the dipole, it can be ignored. If a
current loop forming a magnetic dipole is sufficiently small, the above equation can be considered to be the field of
the current loop. Let the current loop be moving in the positive x direction in the reference frame S (lab frame) such
that it is at the origin of both coordinate systems at time t′ = t = 0. The magnetic field components in the lab frame
are given by

B = Bx′ î+ γBy′ ĵ + γBz′ k̂ (26)

and

E = −v ×B = γvBz′ ĵ − γvBy′ k̂. (27)

The S’ position vector transforms to r′ = γxî+ yĵ + zk̂ so that

r′2 = γ2r2 − (γ2 − 1)(y2 + z2) = γ2r2[1− (v2/c2) sin2 α]

= r2[1− γ2(v2/c2)cos2α], (28)

where r = xk̂ + yĵ + zk̂ is the position vector in the lab frame and α is the angle between v and r [20].
Taking µ′ to be in the positive z direction, the components of the magnetic field in the primed frame are

Bx′ =
3µom

′

4π

x′z′

r′5
,

By′ =
3µom

′

4π

y′z′

r′5
,

Bz′ =
µom

′

4π

[

3z′2

r′5
−

1

r′3

]

. (29)

The transformed field components are,

Bx =
µoµ

4π

3xz

r5[1− γ2(v2/c2)cos2α]5/2
,

By =
µoµ

4π

3yz

r5[1− γ2(v2/c2)cos2α]5/2
,

Bz =
µoµ

4π

[

3z2

r5[1− γ2(v2/c2)cos2α]5/2
−

1

r3[1− γ2(v2/c2)cos2α]3/2

]

. (30)

and

Ex = 0,

Ey =
µovµ

4π

[

3z2

r5[1− γ2(v2/c2)cos2α]5/2
−

1

r3[1− γ2(v2/c2)cos2α]3/2

]

.

Ez = −
µovµ

4π

3yz

r5[1− γ2(v2/c2)cos2α]5/2
, (31)

Noting that (k̂ · r)r = xzî+ yzĵ + z2k̂, allows you to the express the equations in (30) in a coordinate-free way as

B =
µo

4π

[

3(γµ′ · r)r

r5[1 + γ2(v2/c2) cos2 α]5/2
−

γµ′

r3[1 + γ2(v2/c2) cos2 α]3/2

]

. (32)

In the slow-motion approximation you can set the quantities in the brackets in the denominators equal to one, such
that the transformed dipole is µ = γµ′. However, little appears to be gained by this since γ is taken to be one in the
slow-motion approximation anyway.
The electric field resulting from the transformation, E = −v × B at the moment the axes of the laboratory and

primed frames are aligned is

E =
µo

4π

[

−
3γ(µ′ · r)v × r

r5[1 + γ2(v2/c2) cos2 α]5/2
+

γv × µ′

r3[1 + γ2(v2/c2) cos2 α]3/2

]

. (33)

The usual definition of the electric dipole resulting from the motion of a magnetic dipole is p = γv×µ′/c2 such that
there should be a term 3γ(v×µ′ · r)r/r5 inside the brackets if Eq. (33) is the equation of an electric dipole field. To
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introduce p, the numerator of the first term in brackets can be written using a vector identity as (µ′ · r)(v × r) =
−(v×µ′ ·r)r+(v×µ′)r2− (r×µ′)(v ·r). Substituting this and the expression for p in the above equation results in

E =
1

4πǫo

[

3(p · r)r − 3pr2 + 3(r × µ′)(v · r/c2)

r5[1 + γ2(v2/c2) cos2 α]5/2
+

p

r3[1 + γ2(v2/c2) cos2 α]3/2

]

. (34)

For the slow-motion case, this equation can be expressed as

E =
1

4πǫo

[

3(p · r)r

r5
−

p

r3
+

3(r × µ′)(v · r/c2)

r5
−

p

r3

]

. (35)

The first two terms in brackets are the terms of a point electric dipole, and if those were the only terms, you could
argue there is an electric dipole present on a moving magnetic dipole, at least when the speed of the dipole was much
less than c. However the last two terms, though dipole-like, spoil the dipole field. In particular, there is no electric
field parallel to the v direction.
Applying the same procedure to an electric dipole field will obviously render a similar result. The transformed

(slow-motion approximation) magnetic field is

B =
µo

4π

[

3(µ · r)r

r5
−

µ

r3
+

3(r × p′)(v · r)

r5
−

µ

r3

]

. (36)

The same result is obtained if you create an electric dipole out of two equal and opposite charges, letting the charge
magnitude go to infinity as the separation of the charges goes to zero while holding their product constant, instead of
starting out with the point electric dipole equation. Hence there is neither an electric dipole on a moving magnetic
dipole nor a magnetic dipole on a moving electric dipole. Rather, the fields due to the moving dipoles are found from
Maxwell’s equations, which, of course, has to be the case.

VI. TORQUE IN A MOVING CHARGE-MAGNETIC DIPOLE SYSTEM

One area of possible confusion over the existence or non-existence of torque in a moving charge-magnetic dipole
system, such as that which arises in the Mansuripur paradox, could be the fact that there is indeed torque in the
system. The system contains linear and angular momentum in its electromagnetic field and both appear in the angular
momentum four-tensor. When the system is moving, this angular momentum is changing, giving rise to torque. Also,
there is indeed torque due to the interaction between the charge and the magnetic dipole when the system is moving,
but this torque is also in the electromagnetic field and is not mechanical torque. These two torques are equal and
opposite, canceling out with the result the angular momentum of the system is conserved with no mechanical torque
present.
First, look at the field angular momentum. The angular momentum four-tensor is given by

Lµν =







0 Lz −Ly mcx− ctpx
−Lz 0 Lx mcy − ctpy
Ly −Lx 0 mcz − ctpz

mcx+ ctpx mcy + ctpy mcz + ctpz 0






. (37)

Here, L is the angular momentum of the system, p its linear momentum, m is the system mass, (x, y, z) is the point
about which the angular momentum is taken with respect to the center of mass, and t is the time in the rest frame
of the system. Consider the charge-magnet system of the Mansuripur paradox. The angular momentum four-tensor
for the frame S’ is, in the slow-motion approximation,

Lµ′ν′

=















0
µoqµ

4πa
0 mca

−
µoqµ

4πa
0 0

µoqµct

4πa2
0 0 0 0

−mca −
µoqµct

4πa2
0 0















, (38)

where Eqs. (10) and (11) have been used. Transforming this tensor to the lab frame S in which frame S’ is moving
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with speed v in the positive x direction, you get

Lµν =















0
µoqµ

4πa
−

µoqµvt

4πa2
0 mca

−
µoqµ

4πa
+

µoqµvt

4πa2
0 0

µoqµct

4πa2
+

µoqvµ

4πca
0 0 0 0

−mca −
µoqµct

4πa2
−

µoqvµ

4πca
0 0















, (39)

The z component of the angular momentum in the lab frame, Lz = L12 is

Lz =
µoqµ

4πa
−

µoqµvt

4πa2
. (40)

This angular momentum must be in the electromagnetic field since the first term on the right certainly is and the
second is found from a Lorentz transformation of a linear momentum in the electromagnetic field. The time derivative
of this gives the time rate of change of the angular momentum, which is the torque involved.

dLz

dt
= −

µovqµ

4πa2
. (41)

As mentioned, there is torque in the interaction between the current loop and the point charge q, although this
torque, like that given in Eq. (41), is in the electromagnetic field and cancels that of Eq. (41). Look at the force four-
vector on the current loop in the S′ frame. Use the slow-motion approximation such that the current loop is centered
on x = x′ = a at t = t′ = 0 in both frames and where quantities unchanged between S and S’ in this approximation
are not primed. If the radius of the current loop is R, the electric field at a point on the loop x = a + Rcosφ and
y = Rsinφ due to the charge q, where φ is the local azimuth angle measured in the positive direction from the x axis,
is given by

E′ =
1

4πǫo

q(a+R)

(a2 +R2 + 2aRcosφ)3/2
, (42)

where a = âi and R = R(cosφî+ sinφĵ). The loop carries a current density given by

Jµ′

= ρu′(−sinφ, cosφ, 0, 0), that is, Jx′ = −ρu′sinφ and Jy′ = ρu′cosφ, (43)

where ρ is the charge density of the current and u′ is the drift speed. Breaking up the electric field into x and y
components (no z component is present at the loop) and applying the Lorentz electromagnetic field tensor, you get

Eµ′ν′

Jν′ =





























0 0 0
Ex′

c

0 0 0
Ey′

c

0 0 0 0

−
Ex′

c
−
Ey′

c
0 0















































−Jx′

−Jy′

0

0



















=























0

0

0

Jx′Ex′

c
+

Jy′Ey′

c























(44)

The force density in the time slot is seen to be

fct′ =
Jx′Ex′

c
+

Jy′Ey′

c
. (45)

Assuming the distance a is much greater than the loop radius R, the electric field components on the loop in S’ are
approximately (Eq. (42))

Ex′ ≈
q(a+Rcosφ)

4πǫoa3
and Ey′ ≈

qRsinφ

4πǫoa3
. (46)

When you substitute Ex′ and Ey′ from the above equations and Jx′ and Jy′ from Eq. (43) into Eq. (45) and integrate
over the volume, you find that the total four-force on the loop in S’ is zero due to the angular dependence on φ. A
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four-vector that is zero in one frame of reference has to be zero in all other inertial reference frames, including, of
course, the lab frame.
Nevertheless this force is responsible for the appearance of a torque in the lab frame, but this torque results from

a force density in the time component of the four-vector rather than a space component, which implies it is not
a mechanical torque but one confined to the electromagnetic field. The components of the antisymmetric torque
four-tensor, given by the volume integral

ταβ =

∫

V

(xαfβ − xβfα)dV, (47)

in S′ acting on the current loop are not all zero. The volume integrals of the torque density that are zero are due
to the φ dependence and the fact that z = 0. The non-zero pair (symmetric-antisymmetric partners) are τ2

′
4
′

and

τ4
′
2
′

= −τ2
′
4
′

). The calculation of τ2
′
4
′

is carried out as follows, taking the origin about the center of the loop for
the volume integration of the torque density,

τ2
′
4
′

=

∫

V ′

(y′fct′ − ct′f ′

y)dV
′ =

∫

V ′

y′fct′dV
′ =

∫

V ′

(Rsinφ)

(

Jx′Ex′

c
+

Jy′Ey′

c

)

dV ′. (48)

To perform the volume integration, you assume that the wire of the loop is one-dimensional, which lets you make the
substitution ρdV ′ = λRdφ where λ is the linear charge density of the charge carriers responsible for the current. This
allows you to write the integral as

τ2
′
4
′

=
R2λu

c

∫

2π

0

(−Ex′sin2φ+ Ey′sinφcosφ)dφ. (49)

The second integrand gives zero when integrated over φ. The first integrand gives

τ2
′
4
′

=
R2λu′

c

∫

2π

0

(

−
q(a+Rcosφ)

4πǫoa3

)

sin2φdφ = −
qπµ/c

4πǫoa2
, (50)

where µ = IπR2 = λu′πR2. This torque, when transformed to the S frame, gives rise to a torque about the z axis,
as follows,

τz = τ12 =
v

c
τ4

′
2
′

=
v

c
(−τ2

′
4
′

) =
µovqµ

4πa2
. (51)

This is the torque that is supposed to be mechanical in nature and produced by the interaction between the charge q
and the electric dipole on the moving magnetic dipole. However, this torque is actually in the electromagnetic field,
not mechanical, and offsets the torque given in Eq. (41).

VII. A CURRENT LOOP MOVING IN A UNIFORM ELECTRIC FIELD

In this paradox you have a uniform electric field (E = Ek̂) directed parallel to the positive z axis and a current loop

initially moving in the positive x direction in the lab frame (S) at speed v with its magnetic dipole µ = µî pointed in
the direction of motion. This paradox has been treated by Bedford and Krumm [22], by Namias [23]), by Vaidman
[13], and by Franklin [19]. In the rest frame of the loop the electric field is moving in the negative x direction with
speed v. Hence there is a Lorentz-transformed magnetic field present at the loop (Figure 5).

B′ = −γv ×E/c2 = γ(v/c2)Eĵ (52)

There is also a transformed electric field given by

E′ = γE = γEk̂, (53)

The presence of the magnetic field in the S’ frame implies there is a torque on the current loop in that frame (so long
as the induced electric field is not screened) given by

τ ′ = µ′ ×B′ = µ
v

/
c2Ek̂, (54)
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FIG. 5. The ”Paradox” Treated by Vaidman

where the term on the far right uses the slow-motion approximation; that is, γ = 1 (v << c), meaning µ′ = µ and
E′ = E. This approximation will be employed for the rest of this section.

The problem is there is no magnetic field in the lab frame and therefore (presumably) no torque. Why is it that an
observer in S’ records a torque that is not observed in the lab frame? Vaidman found a resolution for three versions
of a magnetic dipole; however, he also claims that two of the dipole models contain hidden momentum. It is possible
to resolve the paradox in a general say and show that hidden momentum, if it exists, spoils the resolution.
The angular momentum four-tensor given by Eq. (37) is repeated here for convenience.

Lµν =







0 Lz −Ly mcx− ctpx
−Lz 0 Lx mcy − ctpy
Ly −Lx 0 mcz − ctpz

mcx+ ctpx mcy + ctpy mcz + ctpz 0






. (55)

Here, as before, L is the angular momentum of the system, p its linear momentum, m is the system mass, (x, y, z)
is the point about which the angular momentum is taken measured from the center of mass, and t is the time in the
rest frame of the system. The hidden linear momentum in the loop in the S’ frame is given by Vaidman as [13]

Phidden = −
1

c

∫

φJdV = µ×E/c2 = −µE/c2ĵ, (56)

when the magnetic dipole is parallel to the positive x direction. J is the current density in the loop and φ = −zE is
the electric potential. (According to the above equation, the hidden momentum will change direction as µ rotates.)
If there is a time-dependent angular momentum Lz′ along the z axis about the center of the loop at time t (= t′ for
the slow-motion approximation) and also hidden linear momentum in the loop given at that instant by Eq. (56), the
angular momentum four-tensor in S’ is

dLµν =











0 Lz′ 0 0
Lz′ 0 0 µEt/c
0 0 0 0
0 −µEt/c 0 0
.











(57)
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The torque on the loop is the time rate of change of its angular momentum in the rest frame (S’) of the loop
(dLz/dt). When the angular momentum four-tensor is Lorentz-transformed to S frame, the four-tensor will contain

Lz = Lz′ − (v/c2)µEt (58)

in the x-y slot. The time derivative of this equation gives

dLz/dt = dLz′/dt− (v/c2)µE, (59)

such that the torque in the S frame does not equal that in th S’ frame. So, we are back to the paradox of observers
in different frames measuring different torques.
The problem is no hidden momentum exists in the current loop in S’. I have shown [6] that you cannot apply an

electric field to a magnet without imparting mechanical linear momentum to it unless the magnet is held stationary
by an external agent. In that case the external agent is the recipient of the linear momentum. Whether the magnet is
held stationary or not, electromagnetic linear momentum is produced which is equal and opposite to the mechanical
linear momentum.
If you let the magnet gain linear momentum, you will need to move to its new rest frame to see its mechanical

momentum is zero and the electromagnetic momentum is not. This is what Shockley and James [5] identified as a
paradox, but it was really just viewing the system in a rest frame different from that in which the electric field was
applied to the magnet.
In this case to start with components containing no momentum you either have to start a current loop moving in

the x direction in the lab frame and then apply an electric field in that frame. Or, you can create a current loop
in the lab electric field then put it into motion in the x direction. In the former case you give the loop mechanical
momentum, then when you apply the electric field in the z direction, you will give the loop an impulse in the positive y
direction unless the loop is restrained. The ”hidden” momentum will be in the external agent producing the restraint.
It’s more complicated when you create the Amperian dipole in an existing electric field. One way to handle this is

to create a uniform electric field inside a spherical shell with a dipolar charge distribution and then create a magnetic
dipole at the center of the shell [6]. This will give the shell an impulse of −E × µ/c2 with an equal and opposite
amount of linear momentum in the electromagnetic field inside and outside the shell. No impulse is given to the
magnet. The total momentum is zero and no hidden momentum is present.

The question remains, however, since you can model an Amperian dipole in several different ways, which models
traveling through the ambient electric field as in Vaidman’s paper [13] experience torque? To address this question
consider a spherical shell with a surface current density [11] given by

K = σω ×R. (60)

Here, σ is the uniform surface charge density of the charge carriers, ω = ωî is the angular velocity of the charge
carriers directed in the positive x direction to conform with the model of the paradox, and R is the position vector
from the center of the shell to its surface.
There will be a uniform magnetic field inside the shell given by

Bo =
2

3
µoσRωî, (61)

and a dipolar magnetic field outside the shell given by Eq. (25) without the Dirac delta function and where the
magnetic moment is

µ =
4π

3
σR4ωî. (62)

An ambient uniform electric field is applied to this magnet, and the Lorentz force that results is offset by an external
agent applying an equal and opposite mechanical force. The source of the electric field will also experience a Lorentz
force, but it can be considered so massive that it hardly moves. Either that, or the external agent can hold it in place
also. There will be linear field momentum equal and opposite to the mechanical momentum.
The usual strategy in special relativistic calculations is to find the reference frame in which the situation is simplest

and then Lorentz-transform to the reference frame of interest. Look at the shell in its rest frame and then have the
shell move in the positive x direction. Travel along with the shell such that, as the observer, you are also moving
through the electric field. This will be the reference frame for computation.
In the slow-motion approximation the ambient electric field is unchanged (multiplied by γ in the fully relativistic

case). The fields associated with the shell will be unchanged, since you are moving along with it. This is the case
even if the shell has an induced charge due to the ambient electric field. The induced electric field will, in the case
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of perfect symmetry, be dipolar outside the shell and uniform inside the shell. If the shell is made of conducting
material, the electric field of the induced charge inside the shell will be zero.
There will be a magnetic field in your frame of reference due to your motion through the ambient electric field.

This field will be

BE =
v

c2
Eĵ, (63)

where E is the magnitude of the ambient field in the z direction. If this field can occupy the same space as the
current, there will be a Lorentz force on the current With the geometric relations given, the usual spherical coordinate
angles are not convenient. Define two new angles: β will play the part of the polar angle and will be measured from
the positive x axis; α will be the azimuth angle and will be measured in the positive direction around the x axis,
originating on the positive y axis. (See Figure 6.)

FIG. 6. Angles Used for Calculation. S is the Surface of the Shell.

With this coordinate definition the surface current density will be

K =
3µ

4πR3
sinβα̂, (64)

where α̂ = −sinαĵ+cosαk̂. An element of current dI will be given by the scalar product between the current density
and the ”area” vector, which in this case will be dl⊥ = Rdβα̂. So you have

dI =
3µ

4πR2
sinβdβ. (65)

Assuming all the current is in the magnetic field, the force on a current element is given by the usual formula

dF = dIdl×BE = −
3µEv

4πc2R
sin2βcosα(dβdα)̂i. (66)

In this case dl = Rsinβdαα̂ is an element of length along the direction of the current.
It is easy to see that the force integrates to zero due to the cosα dependence. The torque is a different story. It is

calculated from the following integral over the surface of the shell.

τ =

∫

S

R× (dIdl×BE =
3µEv

4πc2

∫ π

0

∫

2π

0

sin3βcos2(dβdα)k̂. (67)



17

Note that the contributions to the torque in the x and y directions integrate to zero. Evaluating the integral gives

τ = µ
v

c2
Evk̂. (68)

This is the same result as that found in Eq. (54). However, if the ambient electric field is shielded from the current
by conducting material, then BE = 0 there and there will be no torque, something previously pointed out by Franklin
[12]. If there is induced charge on the shell that is not shielded from the ambient electric field, the Lorentz force on
the two charged hemispheres will be parallel to the z direction and equal and opposite, canceling out and producing
no torque but creating stress in the magnet.

FIG. 7. The Resolution of the ”Paradox”

For a magnetic dipole like that of Shockley and James [5], there is no conducting material and the full torque of
Eq. (68) should be realized. Since there is no magnetic field in the lab frame in which the shell is moving, how is it
that no torque is observed? Actually, the torque is observed as I will now explain.

To get the correct resolution of this paradox, consider the following scenario. Imagine you are an observer in a
uniform magnetic field. (See Figure 7.) The magnetic field is into the plane of the figure and there is a nonconducting
rod with two equal and opposite charges at the ends moving from left to right, the positive charge in the lead.

An observer moving with the rod sees an electric field due to the Lorentz transformation of the magnetic field. She
will see the electric field directed upwards in the figure such that there is an upward force on the positive charge and
a downward force on the negative charge. Hence, there will be a torque acting on the rod. You, however, do not
detect any electric field. Why then should you see a torque acting on the rod? But you do!

No one to my knowledge considers the above scenario to be a paradox – just the manifestation of the Lorentz
force. But the Lorentz force is due to a Lorentz transformation exactly like the case where the current loop is moving
through a uniform electric field and experiencing a torque. In other words, this so-called paradox is not a paradox at
all. If you Lorentz-transform the torque acting on the magnet in the S’ frame to the S (lab) frame, you get the same
torque. (In the fully relativistic case the torque is multiplied by γ. However, the mass and therefore the moment of
inertia also increases by a factor of γ so the angular motion is the same in both frames.)

This argument brings up another point. It should be clear that you cannot create an interaction in a system where
there is none by merely performing a Lorentz transformation. Neither can you Lorentz-transform away an interaction
in a system. The interaction involving the Lorentz-transformed field and the magnet in the S’ frame cannot be
transformed away by observing the system in the S frame.
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VIII. AHARONOV-CASHER EFFECT

Tha Aharonov-Bohm effect [24, 25] was a surprising manifestation of the influence of the vector potential of
electrodynamics on the quantum behavior of particles not subject to either a magnetic or electric field. It was
predicted that two identical charged particles, passing either side of a solenoid would exhibit a phase difference in
their wave functions, leading to a detectable interference pattern when the particles interacted after passing the
solenoid. This was called a ”topological quantum effect”.
This was puzzling since there is no electric or magnetic field acting on the particles, and the vector potential field

through which the particles traveled was thought by many to be only a mathematical convenience for working out
electromagnetic problems. The electric and magnetic fields can be computed from the scalar and vector potentials
of electromagnetism, but neither is unique. They can be transformed by what are called gauge transformations and
yet yield the same electric and magnetic fields. So it was a surprise that a field that was not considered exactly real
could have real effects.
Working with an analogy to the Aharonov-Bohm effect, Aharanov and Casher proposed the same effect would

be seen for neutral magnetic particles traveling on either side of, for example, a line of charge [26]. The proposed
Aharonov-Casher (AC) effect included the proposition that neutrons would not experience a force while moving in an
electric field. Neutrons passing either side of the line of charge with their magnetic moments parallel to the line and
to each other would experience unequal phase shifts in their wave functions resulting in a phase difference of

∆φ = µoλµ/~, (69)

where λ is the linear charge density, µ is the magnetic moment of the neutron, and ~ is the reduced Planck’s constant.
This could appear as a diffraction pattern in an experiment.
Boyer [27] disputed the notion that a neutron in an electric field would not experience a force. Instead, he argued

that a moving neutron, modeled as an Amperian magnet, would sport an electric dipole p which would experience a
force in an electric field E given by

F = (p · ∇)E. (70)

With an electric field produced by a line of charge,

E =
λ

2πǫor2
r, (71)

where r = xî+ yĵ measured from the line of charge, Boyer computed a force on the neutron given in SI units by

F =
µoµλvo
2πr4

[

(y2 − x2)̂i− 2xyĵ
]

. (72)

The force is that on a neutron with its magnetic moment parallel to the line of charge (in the positive z direction)

moving in the positive y direction with speed vo. The electric dipole in this case is given by p = µvo/c
2î.

Boyer considers two such neutrons traveling in the positive y direction with speed vo, one at x = +a and one at
x = −a. He assumes the paths will not vary much from straight lines, an assumption that seems justified considering
that µoµ/2πm = 1.15×10−6 J·m/A·kg, where m is the neutron mass. He finds that a neutron passing on the positive
x side of the wire is delayed with respect to one passing on the negative side by an amount ∆y = µoµλ/mvo, which
results in the same phase shift as found by Aharonov and Casher in Eq. (69). Hence Boyer claims the phase shift
of the AC effect is due to classical lag rather than a quantum topological effect. Arahonov et al [28] responded that
Boyer overlooked the effect of hidden momentum in the charge-magnet system, which acts to render the net force on
the neutron zero.
When Aharonov et al. equate the net force acting on the neutron (their equation (6)) to that acting between the

line of charge and the induced electric dipole plus that due to the supposed rate of change of the hidden momentum,
they find that the net force on the neutron is zero. However, with neither hidden momentum [6, 12, 29, 30] in an
charge-magnet system nor an electric dipole on a moving magnetic moment [19, 20], the AC effect needs a different
analysis.
You cannot understand the momentum of a charge-magnetic dipole system correctly unless you realize that such a

system has to be assembled [6]. A number of researchers have disputed this in personal communications, but certainly
there is no reason you cannot assemble such a system. When you apply an electric field to an Amperian magnetic
dipole or form such a dipole in a preexisting electric field, mechanical momentum due to Lorentz forces is imparted
to both the charge distribution responsible for the electric field and the magnetic dipole. These momenta are equal
in magnitude and direction. An opposite amount of momentum is stored in the electromagnetic field. To prevent the
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components of the system from responding to the Lorentz force, you would need to employ an external agent exerting
mechanical forces.
When a point charge is brought into the vicinity of a small Amperian magnet, the magnet gains an amount of

mechanical linear momentum µ×E/2c2 with an equal momentum gained by the charge, and the opposite of the sum
of these is deposited in the electromagnetic field [6]. (The magnet is small in size compared to the variation of the
electric field such that the electric field can be considered uniform over the magnet.) The force is due to the magnetic
field produced by the displacement current as the charge approaches.
The displacement current will be twice as large for a line of charge approaching a magnet such that the momentum

transferred to the magnet is

Pm = µ×E/c2, (73)

As the magnet moves through the field, the mechanical momentum will in general change with time, giving rise to a
force on the magnet. With the electric field given by Eq. (71), the force is given by dPm/dt with x and y components,
respectively,

Fx =
µoµλ

2πr2

[

2

r2
(r · v)y − ẏ

]

= mẍ, (74)

and

Fy =
µoµλ

2πr2

[

−
2

r2
(r · v)x+ ẋ

]

= mÿ, (75)

the same as found by Boyer. Here v is the velocity of the magnet and m is the magnet’s mass. When you make the
same assumptions as Boyer (initial velocity = ẏĵ = voĵ and x = ±a), these equations become

Fx =
µoµλ

2πr4
(y2 − a2) = mẍ, (76)

and

Fy =
µoµλ

2πr4
(±ay) = mÿ. (77)

From this point on, if you continue the argument of Boyer, you arrive at his result, that the AC phase shift, Eq. (69),
is due to a classical lag.
Eqs. (74) and (75) are highly symmetrical and would appear to have solutions y = y(t) and x = x(t) that would

be very similar. There are at least two solutions, and one is important for the Aharonov-Casher effect. The trivial
solution just has the magnet stationary in the electric field. This would be done my applying mechanical forces to
place the magnet at rest in the field.
A more interesting solution can be found by putting Eqs. (74) and (75) in polar coordinates. The equations are

then

F = −
µoµλ

2πr2
(rφ̇r̂ + ṙφ̂) = m[(r̈ − rφ̇2)r̂ + (2ṙφ̇+ rφ̈)φ̂]. (78)

Look for a solution where r is constant. The equation reduces to

µoµλ

2πr
r̂ = mrφ̇r̂. (79)

The magnet can therefore execute a circle in the counterclockwise direction (assuming λ is positive) with an angular
speed of

ω =
µoµλ

2πmr2
. (80)

Note that no such orbit exists in the clockwise direction for positive λ.
It is interesting that the circumference of the orbit is exactly the same as the classical lag found by Boyer: µoµλ/mv

where v = rω. Since this highly improbable orbit (due to the extreme numbers it needs) is due to electromagnetic-
derived forces and not to quantum effects, its theoretical existence implies the Aharonov-Casher effect is purely due
to a classical lag as Boyer claimed.
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IX. THE FORCE BETWEEN TWO MAGNETIC DIPOLES

As many children have learned while playing with bar magnets, there are forces between the poles, either attractive
or repulsive. Either way, the forces can do work if the magnets are allowed to move. Mansuripur [31] has called this
an apparent violation of the Lorentz force law where a charge is observed to move at a right angle with respect to the
Lorentz force as it traverses a magnetic field. No work is done on a body by a force always acting perpendicular to
its motion. Since an Amperian magnet consists of moving charges, it seems a paradox that magnets can do work (as
they do in many technological applications).
This can be put in relativistic language as follows. Imagine there is a point charge at the origin of its coordinate

system S’. The charge is moving with a speed v in the positive x direction in the lab coordinate system S which
contains a uniform magnetic field in the positive z direction, B = Bk̂. In the S’ frame there is no current density,
but there is a charge. Since the charge is located at r′ = 0 in S’, the current density four-vector is given by

Jµ′

= (0, 0, 0, cqδ(r′)). (81)

In the frame of reference of the charged particle, the magnetic field has been transformed to a slightly modified magnetic
field in the same directionB′ = γB ≈ B and an electric field in the negative y direction, E = −γ(v/c)Bĵ ≈ −(v/c)Bĵ,
where the slow-motion approximation (γ = 1) has been employed. Have the two frames, S and S’ coincide (r = r′)
at t = t′ = 0. Application of the Lorentz force law gives the force density four-vector (force acting per unit volume),

fµ′

= Eµ′ν′

Jν′ =
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. (82)

Integrated over the volume, this is just the same as the more common equation, F = qv ×B. The time component
of the force four-vector is the time rate change of the internal energy of the charge divided by c and is zero here. The
direction of the force is in the y direction, perpendicular to the motion of the charged particle so no work is being
done on the charge.
The situation is different if the magnetic field is due to a magnetic dipole and is acting on an Amperian magnet

given by a current loop. Consider a current loop in the S’ frame with its plane parallel to the y′-z′ plane with radius
R′ and located on the x′ axis at x′ > 0 (Figure 7). The current in the loop is taken to be counterclockwise about the
positive x′ direction such that its current density at R′ is

Jµ′

= (0, Jy′ , Jz′ , 0) = (0,−J ′sinθ′, J ′cosθ′, 0). (83)

Have a magnetic dipole on the x′ axis with its magnetic moment µD pointing in the positive x′ direction and moving
toward the current loop at speed v. Also, employ the slow-motion approximation so that x′ = x, t′ = t, J ′ = J , and
θ′ = θ (and, of course, y′ = y, z′ = z, and R′ = R), then in the S’ frame the magnetic field is the same as in the S
frame, given by

Bx =
µoµD

4πr5
[

3z2 − r2
]

,

By =
3µoµD

4πr5
xy,

Bz =
3µoµD

4πr5
xz. (84)

Plus there is an electric field given by

Ex = 0,

Ey = −
3µoµDv

4πr5
xz,

Ez =
3µoµDv

4πr5
xy, (85)
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FIG. 8. Two Interacting Magnets, North and South Poles Facing Each Other

in the S’ frame due to the Lorentz transformation between frames. (In Figure 8 two magnetic field line loops of the
dipole are shown with a representative B and E field at a point on one loop.) The following equation finds the force
density four-vector.
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= Eµ′ν′

Jν′ =
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The components of the force density four-vector are

fx = −
3µoµD

4πr5
xRρu

fy =
3µoµD

4πr5
(3x2 − r2)ρucosθ =

3µoµD

4πr5
(2x2 −R2)ρucosθ

fz = −
3µoµD

4πr5
(3x2 − r2)ρusinθ = −

3µoµD

4πr5
(2x2 −R2)ρusinθ

fct =
v

c
fx, (87)
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where the current density equals the charge density ρ times the current drift speed u. When you integrate these
force densities over the volume of the loop, the forces parallel to the y and z directions are zero due to the sinusoidal
functions. (This can also be inferred by symmetry.) The torque on the loop is also zero in contrast to the conclusion
by Mansuripur [31] due to the fact the forces in the y and z direction are either toward or away from the center of
the dipole. (His result was due to taking the loop to be charged, but, of course, most magnets are neutral).
The case for the force parallel to the x direction is different. The volume integral is

Fx =

∫

fxdV

= −
3µoµD

4πr5
xuR

∫

ρdV

= −
3µoµD

4πr5
xuRλ

∫

2πR

0

dl

= −
3µoµDµL

2πr4
. (88)

The final result is gotten from the following: ρdV is an element of the charge of the current in the loop and equals
λdl, where λ is the charge per unit length, and dl = Rdθ is an element of the loop’s circumference. Also, the current
I = λu and the magnetic moment of the loop is µL = IπR2. Finally you let R → 0 and x → r as µL is held constant,
forming a point dipole.
You see from the fact that there is a force given by Eq. (88) acting on the current loop in the same direction as its

motion (or in the opposite direction if like poles face each other) that work can be done by the magnetic field. (Even
if you never played with magnets!) Mansuripur argued that torque acting on the electric charge of the current does
work equal and opposite to the work done by the force in Eq. (88) such that there is no net work done. However, a
magnet typically is uncharged; there is as much negative charge as there is positive charge. In this case there is no
torque and Manuripur’s argument fails.
Of course, each moving charge in the current loop experiences a Lorentz force at right angles to its motion. The

answer to this apparent paradox lies in the fact that the charges cannot move freely in the magnetic field. This is
mathematically embodied in the expression for the current density in Eq. (83). If the charges could move freely, the
current in the loop would be dispersed as the charges began to follow looping paths in the magnetic field. Instead,
they are confined to move as implied in Eq. (83) and so produce a force on the loop as they are scattered by phonons,
impurities, and lattice defects.
The time rate of change of the internal energy of the magnet due to the force Fx is the time component of the force

four-vector divided by c, that is,

dE

dt
=

v

c2
Fx = −

v

c

3µoµDµL

2πr4
, (89)

where E is the internal energy. Since the Lorentz force preserves rest mass, the negative of this is the time rate of
change of the work done by the force, which can be seen by calculating the power from force times velocity, vFx. The
energy for doing this work must come from the magnetic field as there is no other source of energy available. The
time-dependent energy density of the magnetic field is BD ·BL/µo, where BD and BL are the magnetic fields of the
magnetic dipole and current loop, respectively. As the magnets are pulled together, which is the case for the above
calculations, the fields between the poles tend to cancel, lowering the field energy. When like poles repel, once again
energy is tapped in like manner from the magnetic field.
In both the S and S’ frames there will be an electric field due to the Lorentz transformation given by Eq. (85).

Thus there will be a field momentum density given by ǫoE×B. It is easy to see, however, that this density integrates
to zero over the volume of the dipole-dipole system, since all of the integrands are odd in the coordinates. Hence,
there is no net electromagnetic field momentum.

X. SUMMARY

The understanding of momentum in charge-magnet systems has been hampered by not taking the formation of these
systems into account. When an Amperian magnet is subjected to an electric field or is formed in a preexisting electric
field (or some combination thereof), Lorentz forces arise that impart momentum to the magnet and the charges or to
an external agent exerting mechanical forces on them. An equal and opposite amount of momentum is added to the
electromagnetic field. The solution to the Shockley-James paradox [5] is that their charge-magnet system is either
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not being viewed in its original rest frame or the mechanical momentum that the system would gain is present in an
external agent. No hidden momentum resides in the charge-magnet system [6].

It has generally been thought that an Amperian magnet moving in an observer’s frame of reference will be observed
to have an electric dipole present on it perpendicular to both the magnetic moment and the direction of motion.
However, there is no such dipole; its mathematical manifestation is due to ignoring the effects of the relativity of
simultaneity [19, 20].

The solution to the paradox of Mansuripur [16] is simply that there is no electric dipole on a moving magnetic
dipole. Hence the supposed torque that would be seen on a moving charge-magnet system due to the interaction of
the charge with the electric dipole is not present. No torque is seen whether or not the system is in motion [32].

As Furry [11] has shown, a charge-magnet system where the magnet is Amperian can contain both linear and
angular momentum in its electromagnetic field. This momentum is obtained when the system is formed and balances
the mechanical momentum that is also generated [6]. When the system is in motion there is a torque, but it is in the
electromagnetic field and has been mistaken as a mechanical torque acting on the magnet.

There are two equal and opposite sources of torque in a moving charge-magnet system, yielding no net torque. One
is due to the motion of the electromagnetic field. The field angular momentum Furry identified is Lorentz-transformed
into a time-dependent angular momentum, thus producing a torque. The other source is due to the interaction between
the charge and the current loop of the magnet, not between the charge and an electric dipole on the magnet [32].

A current loop can experience a torque in a magnetic field unless the field and magnetic moment are parallel or
antiparallel. A current loop moving through an electric field will in general be subject to a Lorentz-transformed
magnetic field and thus should experience a torque. An observer at rest with the electric field sees no magnetic field,
and it has been thought that the observer would detect no torque, thus creating a paradox. Vaidman [13] appeared
to have solved this paradox by calculating the torque to be zero with hidden momentum in the current loop and by
assuming the torque in the frame of the at rest observer to be zero also.

However, if there actually is torque acting on the current loop in its frame of reference, a Lorentz transformation to
any other frame of reference cannot do away with that torque. So, if there is a torque observed in the moving frame
due to a magnetic field in that frame, there will also be a torque seen in any other reference frame, whether or not a
magnetic field is detected in that frame. Thus no paradox exists here.

In the Aharonov-Casher effect [26] neutral Amperian magnets (such as exist on neutrons) are supposed to experience
a differential phase shift in their wave functions as they pass on either side of a line of charge. According to this
effect, the phase shift difference is a result of what is called a quantum topological effect rather than some force that
causes one magnet to beat another to a detection system. Boyer [27] disputed the quantum nature of the effect by
calculating a lag between neutrons passing either side of the line of charge due to a force between the charge of the
line and an electric dipole on the moving magnet. However there is no electric dipole present and this explanation
does not work.

Aharonov et al. [28] accepted the existence of the force Boyer identified but argued that hidden momentum was
involved in canceling it. There is no hidden momentum and no electric dipole, but there is still a force on the
moving magnet due to the change in its mechanical momentum to cancel the opposite change in the electromagnetic
momentum. As such, there is a lag between magnets moving on opposite sides of the line of charge, and this lag turns
out to be the same as that calculated by Boyer.

Mansuripur [31] addressed the force between two magnets as a paradox due to the fact that the force can do work.
However, the Lorentz force on a charge moving through a magnetic field is always perpendicular to the direction of
motion and thus cannot do work. This is not really a paradox. The charges in an Amperian magnet subjected to a
magnetic field are not able to move freely but are kept on a track determined by the conducting material. Or, if the
magnet is made up of counter-rotating non-conducting disks such as that of Shockley and James [5], the charges are
fixed in the disks and are not free to move in response to the Lorentz force. The force on the magnet in either case
is due to the interaction of the charges with the confining material.
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